题名

應用於生理活動偵測之相位及自注鎖定雷達設計

并列篇名

Design of Phase- and Self-Injection-Locked Radar and Its Application in Detection of Physiological Motions

DOI

10.6342/NTU.2013.00009

作者

吳秉勳

关键词

雷達 ; 生理活動 ; 鎖相 ; 自注鎖定 ; 直流偏移 ; radar ; physiological motions ; phase-lock ; self-injection-lock ; dc offset

期刊名称

臺灣大學電信工程學研究所學位論文

卷期/出版年月

2013年

学位类别

博士

导师

許博文

内容语文

英文

中文摘要

本論文提出一種具高偵測靈敏度之相位及自注鎖定雷達架構,可應用於遠距生理活動偵測。此架構將受外界都普勒調變後之雷達回波信號直接注入一鎖相振盪器中,產生自我注入鎖定迴路,並利用擷取鎖相迴路中的控制電壓值得到所需的基頻都普勒信號,因此不需要額外的信號解調電路。雜訊理論分析證明此架構同時具有鎖相振盪器之低雜訊特點與自我注入振盪器之高信號雜訊增益優勢,故在極低基頻頻段具有高信號雜訊增益,可對抗低頻生理信號所在頻寬的強大振盪器相位雜訊,因此本論文提出的相位及自注鎖定雷達架構可用較低之輻射功率完成遠距偵測。 此外,本論文亦著重於解決傳統直接降頻式都普勒雷達接收機架構具有的直流位準偏移與感測零點兩大問題,以達到可靠的偵測結果。首先,由於雷達電路元件本身的非理想性與偵測範圍靜止物體反射造成的直流位準偏移,在本論文提出的架構中可使用簡單的雙端電壓控制射頻振盪器加以消除,不需使用複雜的射頻或基頻處理電路。文中利用傳統注入鎖定方程進行分析,證明此直流位準偏移消除法不致大幅影響系統感測靈敏度。再者,本雷達採用多重路徑切換傳輸架構,藉由獲得兩組相互正交之自我注入鎖定迴路信號資訊,可消除都普勒雷達感測零點並同時降低平均微波輻射功率。 已完成設計並製作數種實驗原型電路以驗證理論推導之正確性,實驗結果確認僅需−22dBm(6微瓦)平均微波輻射功率即可成功偵測遠達4米外的生理信號資訊。

英文摘要

The phase- and self-injection-locked radar is presented in this dissertation for robust detection of physiological motions with high sensitivity. The innovative method injects the Doppler phase-modulated echo signal back into a phase-locked oscillator and obtains the baseband signal by directly sampling the voltage-controlled oscillator tuning voltage controlled by the phase-locked loop without any demodulation circuits. Phase noise analysis indicates that the proposed radar has the advantages of both the phase-locked oscillators and self-injection-locked oscillators to achieve superior signal-to-noise ratio gain against the low-frequency phase noise in the bandwidth containing the physiological motion information. Consequently, the proposed radar can serve for long-range detections with less transmitted power. In addition, this dissertation addresses the dc offset and the null point problems, which are two major challenging issues for conventional Doppler radar designs, in regard to reliable detection. The dc offset caused by clutter reflections and circuit imperfections is eliminated simply using a dual-tuning voltage-controlled oscillator without sophisticated clutter cancellation techniques. Analysis based on the classic injection locking equation shows that the dc offset can be removed without sensitivity degradation. Path-diversity transmission that switches between orthogonal self-injection-locked loops is employed to eliminate null points and reduce average transmitted power. Several prototype circuits are designed to justify the theory and design equations. Experiments confirm successful detection of physiological motions from a distance of 4 meters with −22 dBm average transmitted power.

主题分类 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
参考文献
  1. [1] J. C. Lin, "Noninvasive microwave measurement of respiration," Proc. IEEE, vol. 63, p. 1530, Oct. 1975.
    連結:
  2. [2] K.-M. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, "An X-band microwave life-detection system," IEEE Trans. Biomed. Eng., vol. 33, pp. 697–701, Jul. 1986.
    連結:
  3. [3] K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection system for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, pp. 105–114, Jan. 2000.
    連結:
  4. [4] I. Arai, “Survivor search radar system for persons trapped under earthquake rubble,” in Proc. Asia-Pacific Microw. Conf. , vol. 2, Dec. 2001. pp. 663–668.
    連結:
  5. [5] C. Feige, O. Rogall, S. Fisun, and L. M. Reindl, “Detection technology for trapped and buried people,” in Proc. IEEE MTT-S Int. Microw. Workshop on Wireless Sensing, Local Positioning, and RFID, Sep. 2009.
    連結:
  6. [7] M. Donelli, “A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm,” Progress In Electromagnetics Research M, vol. 19, pp. 173–181, 2011.
    連結:
  7. [8] A. Droitcour, V. Lubecke, J. Lin, and O. Boric-Lubecke, "A microwave radio for Doppler radar sensing of vital signs," in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, May 2001, pp. 175–178.
    連結:
  8. [9] O. Boric-Lubecke, A. D. Droitcour, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Wireless IC Doppler radars for sensing of heart and respiration activity,” in Proc. Int. Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Service, Oct. 2003, pp. 337–343.
    連結:
  9. [12] V. M. Lubecke, O. Boric-Lubecke, and E. Beck, "A compact low-cost add-on module for Doppler radar sensing of vital signs using a wireless communications terminal," in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 1767–1770.
    連結:
  10. [14] A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin and G. T. A. Kovacs, ”Modified silicon base station chips as biomedical sensors,” in Proc. IEEE Topical Conf. on Wireless Communication Technology, Oct. 2003, pp. 210–211.
    連結:
  11. [15] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 838–848, Mar. 2004.
    連結:
  12. [16] A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, and J. Lin, "0.25μm CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs," in Int. Solid-State Circuits Conf. Dig., vol. 1, Feb. 2002, pp. 348–349.
    連結:
  13. [17] A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, and G. Kovacs, "Range correlation effect on ISM Band I/Q CMOS radar for non-contact vital signs sensing," in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jun. 2003, pp. 1945–1948.
    連結:
  14. [19] C. Li, Y. Xiao, and J. Lin, “A 5 GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 494–496, Jul. 2008.
    連結:
  15. [20] C. Li, X. Yu, D. Li, L. Ran, and J. Lin, “Software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2009, pp. 97–100.
    連結:
  16. [21] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, "High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection," IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1410–1419, May 2010.
    連結:
  17. [22] T.-Y. J. Kao, A. Y.-K. Chen, Y. Yan, T.-M. Shen, and J. Lin, “A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2012, pp. 443–446.
    連結:
  18. [23] A. D. Droitcour, O. Boric-Lubecke, and G. T. A. Kovacs, “Signal-to- noise ratio in Doppler radar systems for heart and respiratory rate measurements,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 2498–2507, Oct. 2009.
    連結:
  19. [24] M. Mahler, H.-O. Ruob, W. Menzel, “Radar sensors to determine position and physiological parameters of a person in a vehicle,” in Proc. European Microw. Conf., Sep. 2002.
    連結:
  20. [25] C. Li, J. Lin, and Y. Xiao, “Robust overnight monitoring of human vital signs by a noncontact respiration and heartbeat detector,” in Proc. Int. Conf. IEEE Engineering in Medicine and Biology Society, Aug. 2006, pp. 2235–2238.
    連結:
  21. [26] B.-K. Park, V. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Center tracking quadrature demodulation for a Doppler radar motion detector,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., pp.1323–1326, Jun. 2007.
    連結:
  22. [27] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567–570.
    連結:
  23. [29] C. Gu, Y. Tao, J. Huangfu, S. Qiao, W. Z. Cui, W. Ma, and L. Ran, “An instruments-built Doppler radar for sensing vital signs,” in Proc. Int. Symp. Antennas, Propag. and EM Theory, Nov. 2008, pp. 1398–1401.
    連結:
  24. [31] P. Li and D.-C. Wang, “A quadrature Doppler radar system for sensing human respiration and heart rates,” in Proc. IEEE International Conf. on Signal Processing, Oct. 2010, pp. 2235–2238.
    連結:
  25. [34] D. Girbau, A. Ramos, A. Lazaro, R. Villarino, “Remote sensing of vital signs based on Doppler radar and Zigbee interface,” in Proc. European Microw. Conf., Oct. 2011, pp. 127–130.
    連結:
  26. [35] R. Ichapurapu, S. Jain, M. U. Kakade, D. Y. C. Lie, and R. E. Banister, “A 2.4GHz non-contact biosensor system for continuous vital-signs monitoring on a single PCB,” in Proc. IEEE International Conf. on ASIC, Oct. 2009, pp. 925–928.
    連結:
  27. [36] X. Yu, C. Li, and J. Lin, “System level integration of handheld wireless non-contact vital sign detectors,” in Proc. IEEE Radio and Wireless Symp., Jan. 2009, pp. 514–517.
    連結:
  28. [37] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 3143–3152, Dec. 2008.
    連結:
  29. [38] X. Yu, C. Li, and J. Lin , “Two-dimensional noncontact vital sign detection using Doppler radar array approach,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011.
    連結:
  30. [39] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1073–1079, May 2007.
    連結:
  31. [40] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 2023–2032, May 2006.
    連結:
  32. [41] J. Lin and C. Li, “Wireless non-contact detection of heartbeat and respiration using low-power microwave radar sensor,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007.
    連結:
  33. [42] Y. Xiao, C. Li, and J. Lin, “A portable noncontact heartbeat and respiration monitoring system using 5-GHz Radar,” IEEE Sensors J., vol. 7, pp. 1042–1043, Jul. 2007.
    連結:
  34. [43] A. Singh and V. Lubecke, “A heterodyne receiver for harmonic Doppler radar cardio-pulmonary monitoring with body-worn passive RF tags,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1600–1603.
    連結:
  35. [44] Y. Xiao, C. Li, and J. Lin, “Accuracy of a low-power Ka-band non-contact heartbeat detector measured from four sides of a human body,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1576–1579.
    連結:
  36. [45] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke , “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” in Proc. IEEE Radio and Wireless Symp., Jan. 2010, pp. 571–574.
    連結:
  37. [46] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, pp. 1580–1588, Jun. 2010.
    連結:
  38. [47] D. Girbau, A. Lazaro, A. Ramos, and R. Villarino, “Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,” IEEE Sensors J., vol. 12, pp. 512–518, Mar. 2012.
    連結:
  39. [48] O. Boric-Lubecke, V. M. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung, “Doppler radar sensing of multiple subjects in single and multiple antenna systems,” in Proc. Int. Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Services, vol. 1, Sep. 2005, pp. 7–11.
    連結:
  40. [49] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, “Detection of multiple heartbeats using Doppler radar,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, May 2006.
    連結:
  41. [50] A. Vergara, N. Petrochilos, O. Boric-Lubecke, A. Host-Madsen., and V. Lubecke “Blind source separation of human body motion using direct conversion Doppler radar,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1321–1324.
    連結:
  42. [51] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1325–1328.
    連結:
  43. [52] I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke, and A. Host-Madsen, “Cancellation of unwanted motion in a handheld Doppler radar used for non-contact life sign monitoring,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp.1171–1174.
    連結:
  44. [53] J. H. Oum, D.-W. Kim, and S. Hong, “Two frequency radar sensor for non-contact vital signal monitor,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 919–922.
    連結:
  45. [54] M. Jelen and E. M. Biebl, “Multi-frequency sensor for remote measurement of breath and heartbeat,” Adv. Radio Sci., vol. 4, pp. 79–83, 2006.
    連結:
  46. [55] A. Wiesner, “A multifrequency interferometric CW radar for vital signs detection,” in Proc. IEEE Radar Conf., May 2009.
    連結:
  47. [57] A. Wiesner, “A dual frequency interferometric CW radar for vital signs detection,” in Proc. European Radar Conf., Oct. 2011, pp. 365–368.
    連結:
  48. [58] S. Bakhtiari, T. W. Elmer, II, N. M. Cox, N. Gopalsami, A. C. Raptis, S. Liao, I. Mikhelson, and A. V. Sahakian, “Compact millimeter-wave sensor for remote monitoring of vital signs,” IEEE Trans. Instrum. Meas., vol. 61, pp. 830–841, Mar. 2012.
    連結:
  49. [59] H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors J., vol. 12, pp. 602–609, Mar. 2012.
    連結:
  50. [60] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4464–4471, Dec. 2006.
    連結:
  51. [61] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “A Ka-Band low power Doppler radar system for remote detection of cardiopulmonary motion,” in Proc. IEEE Engineering in Medicine and Biology Conf., Sep. 2005, pp. 7151–7154.
    連結:
  52. [62] D. T. Petkie, E. Bryan, C. Benton, C. Phelps, J. Yoakum, M. Rogers, and A. Reed, “Remote respiration and heart rate monitoring with millimeter-wave/terahertz radars,” Proc. SPIE, Millimetre Wave and Terahertz Sensors and Technology, vol. 7117, Oct. 2008.
    連結:
  53. [63] D. T. Petkie, C. Benton, and E. Bryan, “Millimeter-wave radar for vital signs sensing,” Proc. SPIE, Radar Sensor Technology, vol. 7308, Apr. 2008.
    連結:
  54. [65] D. T. Petkie, E. Bryan, C. Benton, B. D. Rigling, “Millimeter-wave radar systems for biometric applications,” Proc. SPIE, Millimetre Wave and Terahertz Sensors and Technology, vol. 7485, Sep. 2009.
    連結:
  55. [66] J. Geisheimer and E. F. Greneker III, “A Non-contact lie detector using radar vital signs monitor (RVSM) technology,” IEEE Aerosp. Electron. Syst. Mag., vol. 16, Issue 8, pp. 10–14, Aug. 2001.
    連結:
  56. [67] S. Bakhtiari, S. Liao, T. W. Elmer, N. S. Gopalsami, and A. C. Raptis, “A real-time heart rate analysis for a remote millimeter wave I-Q sensor,” IEEE Trans. Biomed. Eng., Vol. 58, Jun. 2011, pp. 1839–1845.
    連結:
  57. [69] D. T. Petkie, C. Benton, E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in Proc. IEEE Radar Conf., May 2009.
    連結:
  58. [70] E. F. Greneker, “Radar sensing of heartbeat and respiration at a distance with security applications,” Proc. SPIE, Radar Sensor Technology II, vol. 3066, pp. 22–27, Apr. 1997.
    連結:
  59. [71] A. Singh and V. M. Lubecke, “Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags,” IEEE Sensors J., vol. 12, pp. 558–565, Mar. 2012.
    連結:
  60. [73] W. Pan, J. Wang, J. Huangfu, C. Li, and L. Ran, “Null point elimination using RF phase shifter in continuous-wave Doppler radar system,” Electron. Lett., vol. 47, no. 21, pp. 1196–1198, Oct. 2011.
    連結:
  61. [74] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 4112–4120, Dec. 2010.
    連結:
  62. [76] F.-K. Wang, T.-S. Horng; K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 3577–3587, Dec. 2011.
    連結:
  63. [77] F.-K. Wang, T.-S. Horng; K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Mutual injection-locked SIL sensor array for vital sign detection with random body movement cancellation,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011.
    連結:
  64. [78] F.-K. Wang, T.-S. Horng; K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Seeing through walls with a self-injection-locked radar to detect hidden people,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
    連結:
  65. [79] S.-G. Kim, G.-H. Yun, and J.-G. Yook, “Compact vital signal sensor using oscillation frequency deviation,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 393–400, Feb. 2012.
    連結:
  66. [80] S.-S. Myoung, J.-H. Park, J.-G. Yook, and B.-J. Jang, “2.4 GHz Bio-radar system with improved performance by using phase-locked loop,” Microw. Opt. Techn. Let., vol. 52, no. 9, pp. 2074–2076, Sep. 2010.
    連結:
  67. [81] B. K. Park, S. Yamada, O. Boric-Lubecke, and V. M. Lubecke, "Single-channel receiver limitations in Doppler radar measurements of periodic motion," in Proc. IEEE Radio and Wireless Symp., Jan. 2006 , pp. 99–102.
    連結:
  68. [82] J. M. Park, D. H. Choi, and S. O. Park, “Wireless vital signal detection systems and its applications at 1.9 GHz and 10 GHz,” in Proc. IEEE AP-S Int. Symp., vol. 4, Jul. 2003, pp. 747–750.
    連結:
  69. [83] R. R. Fletcher and S. Kulkarni, “Wearable Doppler radar with integrated antenna for patient vital sign monitoring,” in Proc. IEEE Radio and Wireless Symp., Jan. 2010. pp. 276–279.
    連結:
  70. [84] L. Anitori, A. Jong, and F. Nennie, “FMCW radar for life-sign detection,” in Proc. IEEE Radar Conf., May 2009.
    連結:
  71. [86] C. Gu, Y. Tao, J. Huangfu, S. Qiao, W. Z. Cui, W. Ma, and L. Ran, “A novel direct-conversion structure for non-contact vital sign detection system,” in Proc. Int. Symp. on Antennas, Propag. and EM Theory, Nov. 2008. pp. 1282–1285.
    連結:
  72. [87] S.-G. Kim, G.-H. Yun, and J.-G. Yook, “Wireless RF vital signal sensor using autoregressive spectral estimation method,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 535–538, Nov. 2012.
    連結:
  73. [88] O. B. Lubecke, P.-W. Ong, and V. M. Lubecke, “10 GHz Doppler radar sensing of respiration and heart movement,” in Proc. IEEE Northeast Bioengineering Conf., Apr. 2002, pp. 55–56.
    連結:
  74. [89] O. Boric-Lubeke, and V. M. Lubecke, “Wireless house calls: using communications technology for health care and monitoring,” IEEE Microw. Mag., vol. 3, pp. 43–48, Mar. 2002.
    連結:
  75. [90] J.-H. Lee, J. M. Hwang, D. H. Choi, and S.-O. Park, “Noninvasive biosignal detection radar system using circular polarization,” IEEE Trans. Inf. Technol. Biomed., vol. 13, pp. 400–404, May 2009.
    連結:
  76. [91] J. H. Choi and D. K. Kim, “A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate,” IEEE Trans. Biomed. Circuits Syst., vol. 3, pp. 181–188, Jun. 2009.
    連結:
  77. [92] X. Yu, C. Li, and J. Lin, “Noise analysis for noncontact vital sign detectors,” in Proc. IEEE Wireless Microw. Tech. Conf., Apr. 2010.
    連結:
  78. [94] C. Li, J. Ling, J. Li, and J. Lin, “Accurate Doppler radar noncontact vital sign detection using the RELAX algorithm,” IEEE Trans. Instrum. Meas., vol. 59, pp. 687–695, Mar. 2010.
    連結:
  79. [95] Y. Wang, Q. Liu, and A. E. Fathy, “CW and pulse–Doppler radar processing based on FPGA for human sensing applications,” to appear in IEEE Trans. Geosci. Remote Sens.
    連結:
  80. [97] C. Li and J. Lin, “Optimal carrier frequency of non-contact vital sign detectors,” in Proc. IEEE Radio and Wireless Symp., 2007, pp. 281–284.
    連結:
  81. [98] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar remote monitoring of vital signs,” IEEE Microw. Mag., pp. 47–56, Feb. 2009.
    連結:
  82. [99] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microw. Conf., Dec. 2010, pp. 283–290.
    連結:
  83. [102] A. Nezirović, A. G. Yarovoy, and L. P. Ligthart, “Signal processing for improved detection of trapped victims using UWB radar,” IEEE Trans. Geosci. Remote Sens., vol. 48, pp. 2005–2014, Apr. 2010.
    連結:
  84. [103] A. N. Gaikwad, D. Singh, and M. J. Nigam, “Application of clutter reduction techniques for detection of metallic and low dielectric target behind the brick wall by stepped frequency continuous wave radar in ultra-wideband range,” IET Radar Sonar Navig., vol. 5, pp. 416–425, Apr. 2011.
    連結:
  85. [104] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. De Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, pp. 503–510, Dec. 2011.
    連結:
  86. [105] T.-S. Chu, J. Roderick, S.-H. Chang, T. Mercer, C. Du, and H. Hashemi, “A short-range UWB impulse-radio CMOS sensor for human feature detection,” in Int. Solid-State Circuits Conf. Dig., Feb. 2011, pp. 294–296.
    連結:
  87. [106] Y. Xu, S. Dai, S. Wu, J. Chen, and G. Fang, “Vital sign detection method based on multiple higher order cumulant for ultra wideband radar,” IEEE Trans. Geosci. Remote Sens., vol. 50, pp. 1254–1265, Apr. 2012.
    連結:
  88. [110] H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 802–805, Nov. 2009.
    連結:
  89. [111] J. Li, Z. Zeng, J. Sun and F. Liu, “Through-Wall detection of human being movement by UWB radar,” IEEE Geosci. Remote Sens. Lett., vol. 9, pp. 1079–1083, Nov. 2012.
    連結:
  90. [112] M. C. Budge Jr. and M. P. Burt, “Range correlation effects in radars,” in Proc. IEEE Radar Conf., pp. 212–216, 1993.
    連結:
  91. [113] M. C. Budge Jr. and M. P. Burt, “Range correlation effects on phase and amplitude noise,” in Proc. IEEE SoutheastCon Conf., Apr. 1993.
    連結:
  92. [115] O. Aardal, S. Hamran, T. Berger, J. Hammerstad, and T. S. Lande, “Radar cross section of the human heartbeat and respiration,” in Proc. IEEE Biomedical Circuits and Systems Conf., Nov. 2010, pp. 53–57.
    連結:
  93. [116] O. Aardal, S.-E. Hamran, T. Berger, J. Hammerstad, and T. S. Lande, “Radar cross section of the human heartbeat and respiration in the 500 MHz to 3 GHz band,” in Proc. IEEE Radio and Wireless Symp., Jan. 2011, pp. 422–425.
    連結:
  94. [117] R. Alder, “A study of locking phenomena in oscillators,” Proc. IRE., vol. 34, pp. 351–357, Jun. 1946.
    連結:
  95. [118] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, pp. 1415–1424, Sep. 2004.
    連結:
  96. [119] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE., vol. 53, pp. 1723–1728, Nov. 1965.
    連結:
  97. [120] H. L. Stove, “Theoretical explanation for the output spectra of unlocked driven oscillators,” Proc. IEEE., vol. 54, pp. 310–311, Feb. 1966.
    連結:
  98. [121] M. Armand, “On the output spectrum of unlocked driven oscillators,” Proc. IEEE., vol. 57, pp. 798–799, May 1969.
    連結:
  99. [122] K. Kurowaka, “Injection locking of microwave solid-state oscillators,” Proc. IEEE., vol. 61, pp. 1386–1413, Oct. 1973.
    連結:
  100. [123] T. Djurhuus and V. Krozer, “Theory of injection-locked oscillator phase noise,” IEEE Trans. Circuits Syst. I, vol. 58, pp. 312–325, Feb. 2011.
    連結:
  101. [124] E. Shumakher and G. Eisenstein “On the noise properties of injection locked oscillators,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1523–1537, May 2004.
    連結:
  102. [125] F. Ramirez, M. Ponton, S. Sancho, and A. Suarez, “Phase-noise analysis of injection-locked oscillators and analog frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 393–407, Feb. 2008.
    連結:
  103. [126] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: a possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 1578–1584, Sep. 1997.
    連結:
  104. [127] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, pp. 1425–1433, Sep. 2004.
    連結:
  105. [128] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for MM-wave applications,” IEEE J. Solid-State Circuits, vol. 46, pp. 2635–2649, Nov. 2011.
    連結:
  106. [129] Q. Zhu and Y. Xu, “A 228 μW 750 MHz BPSK demodulator based on injection locking,” IEEE J. Solid-State Circuits, vol. 46, pp. 416–423, Feb. 2011.
    連結:
  107. [130] H. Yan, J. G. Macias-Montero, A. Akhnoukh, L. C. N. de Vreede, J. R. Long, and J. N. Burghartz “An ultra-low-power BPSK receiver and demodulator based on injection-locked oscillators” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 1339–1349, May 2011.
    連結:
  108. [131] P. Popplewell, V. Karam, A. Shamim, J. Rogers, L. Roy, and C. Plett “A 5.2GHz BFSK transceiver using injection-locking and an on-chip antenna,” IEEE J. Solid-State Circuits, vol. 43, pp. 981–990, Apr. 2008.
    連結:
  109. [132] J. M. Lopez-Villegas and J. J. S. Cordoba, “BPSK to ASK signal conversion using injection-locked oscillators—part I: theory,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 3757–3766, Dec. 2005.
    連結:
  110. [133] J. M. Lopez-Villegas IEEE, J. G. Macias-Montero, J. A. Osorio, J. Cabanillas, N. Vidal, and J. Samitier, “BPSK to ASK signal conversion using injection-locked oscillators—part II: experiment,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 226–234, Jan. 2006.
    連結:
  111. [134] C.-T. Chen, C.-H. Hsiao, T.-S. Horng, K.-C. Peng, and C.-J. Li, “Cognitive polar receiver using two injection-locked oscillator stages,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 3484–3493, Dec. 2011.
    連結:
  112. [135] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A Novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 3143–3152, Dec. 2009.
    連結:
  113. [136] S.-H. Yan and T.-H. Chu, “A beam-steering antenna array using injection locked coupled oscillators with self-yuning of oscillator free-running frequencies,” IEEE Trans. Antennas Propag., vol. 56, pp. 2920–2928, Sep. 2008.
    連結:
  114. [137] S.-H. Yan and T.-H. Chu, “A beam-steering and -switching antenna array using a coupled phase-locked loop array,” IEEE Trans. Antennas Propag., vol. 57, pp. 638–644, Mar. 2009.
    連結:
  115. [138] C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A rigorous analysis of a phase-locked oscillator under injection,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1391–1400, May 2010.
    連結:
  116. [139] H.-C. Chang, A. Borgioli, P. Yeh, and R. A. York, “Analysis of oscillators with external feedback loop for improved locking range and noise reduction,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1535–1544, Aug. 1999.
    連結:
  117. [140] H.-C. Chang, “Phase noise in self-injection-locked oscillators—theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1994–1999, Sep. 2003.
    連結:
  118. [141] H.-C. Chang, “Stability analysis of self-injection-locked oscillators,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1989–1993, Sep. 2003.
    連結:
  119. [142] A. Suarez and F. Ramirez, “Analysis of stabilization circuits for phase-noise reduction in microwave oscillators,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2743–2751, Sep. 2005.
    連結:
  120. [143] L. P. Barry, R. F. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett., vol. 5, pp. 1132–1134, Oct. 1993.
    連結:
  121. [144] S. Yamashita, K. Hsu, and T. Murakami, “High-performance single-frequency fibre Fabry-Perot laser (FFPL) with self-injection locking,” Electron. Lett., vol. 35, no. 22, pp. 1952–1954, Oct. 1999.
    連結:
  122. [145] K. Hsu and S.Yamashita, “Single-polarization generation in fiber Fabry-Perot laser by self-injection locking in short feedback cavity,” J. Lightw. Technol., vol. 19, no. 4, pp. 520–526, Apr. 2001.
    連結:
  123. [147] V. F. Kroupa, “Noise properties of PLL systems,” IEEE Trans. Comm., vol. 28, pp. 2244–2252, Oct. 1982.
    連結:
  124. [148] A. Mehrotra, “Noise analysis of phase-locked loops,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 1309–1316, Sep. 2002.
    連結:
  125. [149] B. Razavi, “Design considerations for direct conversion receivers,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 428–435, Jun. 1997.
    連結:
  126. [151] M. Jahn, C. Wagner, and A. Stelzer “DC-offset compensation concept for monostatic FMCW radar transceivers,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 525–527, Sep. 2010.
    連結:
  127. [152] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers: characterization and implications,” IEEE Microw. Mag., pp. 76–81, Sep. 2005.
    連結:
  128. [153] Y.-J. Jung, H. Jeong, E. Song, J. Lee, S.-W. Lee, D. Seo, I. Song, S. Jung, J. Park, D.-K. Jeong, S.-I. Chae, and W. Kim “A 2.4-GHz 0.25-μm CMOS dual-mode direct-conversion transceiver for Bluetooth and 802.11b,” IEEE J. Solid-State Circuits, vol. 39, pp. 1185–1190, Jul. 2004.
    連結:
  129. [154] S. Zhou and M.-C. F. Chang, “A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, pp. 1084–1193, May 2005.
    連結:
  130. [155] K. Lin, Y. E. Wang, C.-K. Pao, and Y.-C. Shih, “A Ka-band FMCW radar front-end with adaptive leakage cancellation,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4041–4048, Dec. 2006.
    連結:
  131. [156] H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceller for microwave life-detection systems,” IEEE Trans. Instrum. Meas., vol. 40, pp. 747–750, Aug. 1991.
    連結:
  132. [157] T.-Y. Chin, K.-Y. Lin, S.-F. Chang, and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar for noncontact vital signal detection,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 764–767.
    連結:
  133. [158] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
    連結:
  134. [159] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits., vol. 31, pp. 331–343, Mar. 1996.
    連結:
  135. [163] D. M. Pozar, Microwave Engineering, 2nd ed., Wiley, 1998.
    連結:
  136. [164] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
    連結:
  137. [168] B. Edde, Radar: Principles, Technology, Applications, New Jersey: Prentice Hall, 1993.
    連結:
  138. [6] N. Z. Gauri and S. S. Badnerkar, “A modern microwave life detection system for human being buried under bubble,” Int. J. Advanced Engineering Research and Studies, vol. 1, pp. 69–77, Dec. 2011.
  139. [10] E. Yavari, C. Song; V. Lubecke, and O. Boric-Lubecke, “System-on-chip based Doppler radar occupancy sensor,” in Proc. IEEE Int. Conf. Engineering in Medicine and Biology Society, Sep. 2011, pp.1913–1916.
  140. [11] O. Boric-Lubecke, G. Awater, and V. M. Lubecke, "Wireless LAN PC card sensing of vital signs," in Proc. IEEE AP-S Topical Conference on Wireless Communications Technology, Oct. 2003, pp. 206–207.
  141. [13] A. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, and G. Kovacs, "Physiological motion sensing with modified silicon base station chips," IEICE Trans. Electron., E87-C, No. 9, pp.1524–1531, Sep. 2004.
  142. [18] A. D. Droitcour, “Non-contact measurement of heart and respiration rates with a single-chip microwave Doppler radar,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, 2006.
  143. [28] B.-J. Jang, S.-H. Wi, J.-G. Yook, M.-Q. Lee, and K.-J. Lee, “Wireless bio-radar sensor for heartbeat and respiration detection,” Progress in Electromagnetics Research C, vol. 5, pp. 149–168, 2008.
  144. [30] O. Boric-Lubecke, V. M. Lubecke, I. Mostafanezhad, B.-K. Park, W. Massagram, and B. Jokanovic, “Doppler radar architectures and signal processing for heart rate extraction,” Mikrotalasna revija (Microwave Review), pp. 12–17, Dec. 2009.
  145. [32] W. Hu, D. Y. C. Lie, M. U. Kakade, R. Ichapurapu, S. Mane, J. Lopez, Y. Li, C. Li, R. E. Banister, A. Dentino, T. Nguyen, S. Zupancic, and J. Griswold, “An intelligent non-contact wireless monitoring system for vital signs and motion detection,” in Proc. System Science and Engineering Conf., Jul. 2010, pp.190–194.
  146. [33] A. Wiesner, “CW radar based vital signs detection,” in Proc. European Microw. Conf., Sep. 2009, pp. 1595–1598.
  147. [56] L. Chioukh, H. Boutayeb, D. Deslandes, and K. Wu, “Multi-frequency radar systems for monitoring vital signs,” in Proc. Asia-Pacific Microw. Conf., Dec. 2010, pp. 1669–1672.
  148. [64] M. C. Moulton, M. L. Bischoff, C. Benton, and D. T. Petkie, “Micro-Doppler radar signatures of human activity,” Proc. SPIE, Millimetre Wave and Terahertz Sensors and Technology, vol. 7837, Oct. 2010.
  149. [68] S. Ayhan, S. Diebold, S. Scherr, A. Tessmann, O. Ambacher, I. Kallfass, and T. Zwick, “A 96 GHz radar system for respiration and heart rate measurements,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
  150. [72] L. Chioukh, H. Boutayeb, K. Wu, and D. Deslandes, “Monitoring vital signs using remote harmonic radar concept,” in Proc. European Radar Conf., Oct. 2011, pp. 381–384.
  151. [75] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sensing,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 768–771.
  152. [85] D. Dei, G. Grazzini, G. Luzi, M. Pieraccini, C. Atzeni, S. Boncinelli, G. Camiciottoli, W. Castellani, M. Marsili and J. L. Dico , “Non-contact detection of breathing using a microwave sensor,” Sensors, vol. 9, pp. 2574–2585, Apr. 2009.
  153. [93] B. S. Jensen, T. Jensen, V. Zhurbenko, and T. K. Johansen, “Noise considerations for vital signs CW radar sensors,” in Proc. European Conf. Antennas Propag., Apr. 2011, pp. 2805–2809.
  154. [96] V. M. Lubecke, O. Boric-Lubecke, A. Host-Madsen, and A. E. Fathy, “Through the wall radar life detection and monitoring,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 769–773.
  155. [100] M. Mincica, D. Pepe, A. Tognetti, A. Lanata, D. De Rossi, and D. Zito, “Enabling technology for heart health wireless assistance,” in Proc. IEEE Int. Conf. on e-Health Networking Applications and Services, Jul. 2010, pp. 36–42.
  156. [101] A. S. Bugaev, I. A. Vasilev, S. I. Ivashov, and V. V. Chapurskii, “Radar methods of detection of human breathing and heartbeat,” J. Communications Technology and Electronics, vol. 51, no. 10, pp. 1154–1168, 2006.
  157. [107] V. M. Lubecke, O. Boric-Lubecke, A. Host-Madsen, and A. E. Fathy, “Through the wall radar life detection and monitoring,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 769–773.
  158. [108] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a UWB radar based on a correlation receiver,” in Proc. European Conf. Antennas Propag., Apr. 2010.
  159. [109] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse based UWB Signal,” in Proc. European Microwave Conf., Oct. 2011, pp. 135–138.
  160. [114] J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Radar cross section of human cardiopulmonary activity for recumbent subject,” in Proc. IEEE Int. Conf. Engineering in Medicine and Biology Society, Sep. 2009, pp. 4808–4811.
  161. [146] R. E. Best, Phase-Locked Loops, 2nd ed., New York: John Wiley, 1981.
  162. [150] D. Mittelstrass, D. Steinbuch, T. Walter, C. Waldschmidt, and R. Weigel, “DC-offset compensation in a bistatic 77GHz-FMCW-Radar,” in Proc. European Radar Conf., Oct. 2007, pp. 447–450.
  163. [160] A. V. Oppenheim and A. S. Willsky, Signals & Systems, 2nd ed., New Jersey: Prentice Hall, 1997.
  164. [161] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, 2nd ed., New Jersey: Prentice Hall, 1999.
  165. [162] M. Skolnik, Introduction to Radar Systems, 3rd ed., Boston: McGraw-Hill, 2001.
  166. [165] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, 2011.
  167. [166] M. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008.
  168. [167] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd ed., Boston: Artech House, 1993.