题名

抗血管新生之基因治療可增進原位肝腫瘤之免疫療法的療效

并列篇名

Anti-angiogenic Gene Therapies Enhance the Effects of Immunotherapy in Orthotopic Liver Tumors

DOI

10.6342/NTU.2012.00019

作者

王皓恬

关键词

抗血管新生 ; 基因治療 ; 免疫療法 ; anti-angiogenic therapy ; gene therapy ; immunotherapy

期刊名称

臺灣大學微生物學研究所學位論文

卷期/出版年月

2012年

学位类别

博士

导师

黃麗華

内容语文

英文

中文摘要

免疫療法不只能有效地對抗腫瘤,其所產生的免疫記憶也能提供一個長時間的保護,避免腫瘤復發。然而,免疫療法所刺激活化的免疫細胞,往往因為腫瘤內不同機制的存在,無法正常發揮清除腫瘤的作用,影響治療效果。在本篇研究中,我們嘗試利用兩種不同的方式,來增強免疫療法(granulocyte macrophage colony-stimulating factor + interleukin-12)的療效。Calreticulin (CRT)是一個存在於內質網(endoplasmic reticulum)中的輔助蛋白(chaperon),已被證實具有抗血管新生並抑制腫瘤生長的功能。在第一部份的實驗中,我們發現CRT 能增加腫瘤內皮細胞上黏附分子(adhesion molecule)的表現,這將有助於淋巴細胞與內皮細胞的結合,並增加淋巴細胞的穿透。因此,CRT能藉由增加淋巴細胞穿透至腫瘤的數量,有效提升免疫療法的抗腫瘤功效。另一方面,我們也嘗試著將免疫療法與endostatin (ED)和pigment epithelium-derived factor (PEDF)作結合。我們發現,相較於治療小腫瘤,免疫療法在治療大腫瘤時的療效會明顯減弱許多,而ED及PEDF的參與,將能增加對大腫瘤的抑制效果。進一步藉由觀察治療後不同時間點腫瘤內的變化,我們發現 ED 與 PEDF 可降低大腫瘤中的抑制免疫反應,使免疫療法在其中更易發揮治療效果。因此,縱使參與的機制不盡相同,我們所使用的兩種抗血管新生治療法,都能幫助經由免疫療法所刺激的免疫細胞,更有效率地在腫瘤處發揮其毒殺的功能,也因此,提升了免疫療法的治療效果。

英文摘要

Immunotherapy is an approach to systemically eradicate tumors, and the immunological memory established further provides long-term protection from cancer recurrence. However, the tumor-specific effector cells elicited by immunotherapy are usually inhibited by multiple mechanisms existing in the tumor microenvironment, thus greatly reducing the therapeutic efficacy. Here, we have attempted to improve immunotherapy (granulocyte macrophage colony-stimulating factor + interleukin-12) using various approaches. Calreticulin (CRT), a chaperon residing in the endoplasmic reticulum, has been shown to exert anti-angiogenic activity and inhibit tumor growth. In the first part of this study, we demonstrated a novel role for CRT, which can up-regulate the expression of adhesion molecules on tumor endothelial cells, resulting in enhanced lymphocyte-endothelial cell interactions and subsequent lymphocyte infiltration. Thus, combining CRT with immunotherapy would improve the anti-tumor effects of immunotherapy by markedly increasing the levels of tumor-infiltrating lymphocytes. We also examined the effect of combining immunotherapy with endostatin (ED) and pigment epithelium-derived factor (PEDF). While immunotherapy alone was much less effective in treating large tumors than in treating small tumors, ED and PEDF helped to improve the anti-tumor effect of immunotherapy. Observations from the dynamic changes in the tumor microenvironment revealed that ED + PEDF can alleviate immunosuppression, which might be related to reduce VEGF levels, making the tumors more vulnerable to immunotherapy. Therefore, although these two approaches mediate different mechanisms, both of the anti-angiogenic therapies can promote the function of immunotherapy-stimulated effector cells within the tumor region and thus improve the immunotherapeutic effects.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 微生物學研究所
参考文献
  1. 1. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence
    連結:
  2. and trends. Gastroenterology 2004;127:S5-S16.
    連結:
  3. 2. Stewart TJ, Abrams SI. How tumours escape mass destruction. Oncogene
    連結:
  4. proangiogenic properties of alternatively activated dendritic cells. J Immunol 2005;175:2788-92.
    連結:
  5. 4. Zou W. Immunosuppressive networks in the tumour environment and their
    連結:
  6. therapeutic relevance. Nat Rev Cancer 2005;5:263-74.
    連結:
  7. myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409-21.
    連結:
  8. promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011;475:226-30.
    連結:
  9. 7. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization:
    連結:
  10. tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-55.
    連結:
  11. 8. Ribatti D. The paracrine role of Tie-2-expressing monocytes in tumor angiogenesis.
    連結:
  12. Stem Cells Dev 2009;18:703-6.
    連結:
  13. 9. Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression:
    連結:
  14. cancer and other tales. Nat Rev Immunol 2011;11:702-11.
    連結:
  15. 10. Gabrilovich D. Mechanisms and functional significance of tumour-induced
    連結:
  16. dendritic-cell defects. Nat Rev Immunol 2004;4:941-52.
    連結:
  17. 11. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the
    連結:
  18. immune system. Nat Rev Immunol 2009;9:162-74.
    連結:
  19. 12. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages
    連結:
  20. (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009;86:1065-73.
    連結:
  21. 13. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer
    連結:
  22. growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003;198:1741-52.
    連結:
  23. regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-29.
    連結:
  24. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009;114:1537-44.
    連結:
  25. 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000;192:1213-22.
    連結:
  26. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233-8.
    連結:
  27. production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001;166:678-89.
    連結:
  28. and immune suppression by myeloid derived suppressor cells. Immunol. Rev. 2008;222:162-79.
    連結:
  29. myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006;66:1123-31.
    連結:
  30. vascular endothelial growth factor receptor-2 inhibitor enhances anti-tumor immunity through an immune-based mechanism. Clin Cancer Res 2007;13:3951-9.
    連結:
  31. 35. Szala S, Mitrus I, Sochanik A. Can inhibition of angiogenesis and stimulation of
    連結:
  32. growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 2006;12:6808-16.
    連結:
  33. dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4. Cancer Lett 2006;235:229-38.
    連結:
  34. al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 2006;20:621-30.
    連結:
  35. 39. Griffioen AW, Vyth-Dreese FA. Angiostasis as a way to improve immunotherapy.
    連結:
  36. Thromb Haemost 2009;101:1025-31.
    連結:
  37. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int J Cancer 1999;80:315-9.
    連結:
  38. angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 2007;21:1422-9.
    連結:
  39. 43. Viloria-Petit AM, Kerbel RS. Acquired resistance to EGFR inhibitors:
    連結:
  40. mechanisms and prevention strategies. Int J Radiat Oncol Biol Phys 2004;58:914-26.
    連結:
  41. endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology 2005;41:879-86.
    連結:
  42. antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005;8:299-309.
    連結:
  43. phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27:672-80.
    連結:
  44. multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009;417:651-66.
    連結:
  45. functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 1999;18:6718-29.
    連結:
  46. 50. Qiu Y, Michalak M. Transcriptional control of the calreticulin gene in health and
    連結:
  47. disease. Int J Biochem Cell Biol 2009;41:531-8.
    連結:
  48. protein, one gene, many functions. Biochem J 1999;344 Pt 2:281-92.
    連結:
  49. essential for cardiac development. J Cell Biol 1999;144:857-68.
    連結:
  50. region in calreticulin. FEBS Lett 1995;376:53-7.
    連結:
  51. lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 2002;277:29686-97.
    連結:
  52. 55. Pike SE, Yao L, Jones KD, Cherney B, Appella E, et al. Vasostatin, a calreticulin
    連結:
  53. fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998;188:2349-56.
    連結:
  54. 56. The angiogenesis inhibitor vasostatin. In tumor inhibiting doses there is no
    連結:
  55. growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 2008;14:939-49.
    連結:
  56. adenoviral mediated gene transfer of vasostatin in mice. Gut 2006;55:259-65.
    連結:
  57. 60. Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and
    連結:
  58. identification of its Ca2+ binding domains. J Biol Chem 1991;266:21458-65.
    連結:
  59. calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 1994;33:3229-36.
    連結:
  60. 62. Vassilakos A, Michalak M, Lehrman MA, Williams DB. Oligosaccharide binding
    連結:
  61. characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 1998;37:3480-90.
    連結:
  62. reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 2002;99:1954-9.
    連結:
  63. specialization of calreticulin domains. J Cell Biol 2001;154:961-72.
    連結:
  64. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2010;24:665-83.
    連結:
  65. antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001;108:669-78.
    連結:
  66. vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine 2005;23:3864-74.
    連結:
  67. anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem 2002;277:37219-28.
    連結:
  68. through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 2003;116:2917-27.
    連結:
  69. exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54-61.
    連結:
  70. required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007;14:1848-50.
    連結:
  71. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321-34.
    連結:
  72. and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001;194:781-95.
    連結:
  73. 76. Gardai SJ, Bratton DL, Ogden CA, Henson PM. Recognition ligands on apoptotic
    連結:
  74. cells: a perspective. J Leukoc Biol 2006;79:896-903.
    連結:
  75. Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 2008;173:610-30.
    連結:
  76. activity in calreticulin-deficient CTLs. J Immunol 2005;174:3212-9.
    連結:
  77. endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277-85.
    連結:
  78. generates endostatin from collagen XVIII. EMBO J 2000;19:1187-94.
    連結:
  79. of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci U S A 2001;98:1024-9.
    連結:
  80. and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 2003;100:4766-71.
    連結:
  81. binds tropomyosin. A potential modulator of the anti-tumor activity of endostatin. J Biol Chem 2001;276:25190-6.
    連結:
  82. surface glypicans are low-affinity endostatin receptors. Mol Cell 2001;7:811-22.
    連結:
  83. and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 1998;17:4249-56.
    連結:
  84. mediates antiangiogenic and anti-tumor activity of endostatin. Blood 2007;110:2899-906.
    連結:
  85. 89. Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of
    連結:
  86. action. Exp Cell Res 2006;312:594-607.
    連結:
  87. 90. Abdollahi A, Hlatky L, Huber PE. Endostatin: the logic of antiangiogenic therapy.
    連結:
  88. Drug Resist Updat 2005;8:59-74.
    連結:
  89. recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002;20:3772-84.
    連結:
  90. recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002;20:3792-803.
    連結:
  91. inhibitor, endostatin, does not affect murine cutaneous wound healing. J Surg Res 2000;91:26-31.
    連結:
  92. experimental cancer does not induce acquired drug resistance. Nature 1997;390:404-7.
    連結:
  93. combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice. Lung Cancer 2011;72:165-71.
    連結:
  94. recombinant human endostatin combined with chemotherapeutics in mice-transplanted tumors. Eur J Pharmacol 2009;617:23-7.
    連結:
  95. et al. Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res 2006;66:4319-28.
    連結:
  96. 98. Tai KF, Chen PJ, Chen DS, Hwang LH. Concurrent delivery of GM-CSF and
    連結:
  97. endostatin genes by a single adenoviral vector provides a synergistic effect on the treatment of orthotopic liver tumors. J Gene Med 2003;5:386-98.
    連結:
  98. therapy enhances the efficacy of IL-2 in suppressing metastatic renal cell carcinoma in mice. Cancer Immunol Immunother 2010;59:1357-65.
    連結:
  99. of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol 2006;24:3555-61.
    連結:
  100. of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J 2002;16:1802-4.
    連結:
  101. endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002;277:27872-9.
    連結:
  102. 103. Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin. FASEB J
    連結:
  103. Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem 2002;277:16464-9.
    連結:
  104. 2008;27:5894-903.
  105. 3. Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, et al. Cutting edge:
  106. 5. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, et al. Expansion of
  107. 6. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, et al. Tumour hypoxia
  108. 2010;127:759-67.
  109. 14. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, et al. Transforming
  110. 15. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, et al. PD-L1
  111. 16. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, et al.
  112. 28. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin
  113. 29. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N.
  114. 30. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, et al. Vascular endothelial
  115. growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998;92:4150-66.
  116. 31. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, et al. Increased
  117. 32. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance
  118. 33. Huang B, Pan PY, Li Q, Sato AI, Levy DE, et al. Gr-1+CD115+ immature
  119. 34. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, et al. A
  120. immune response be combined into a more effective anti-tumor therapy? Cancer Immunol Immunother 2010;59:1449-55.
  121. 36. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, et al. Vascular endothelial
  122. 37. Pedersen AE, Buus S, Claesson MH. Treatment of transplanted CT26 tumour with
  123. 38. Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, et
  124. 40. Griffioen AW, Damen CA, Mayo KH, Barendsz-Janson AF, Martinotti S, et al.
  125. 41. Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, et al. The
  126. 42. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, , et al. Possible mechanisms of
  127. acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001;20:79-86.
  128. 44. Graepler F, Verbeek B, Graeter T, Smirnow I, Kong HL, et al. Combined
  129. 45. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of
  130. 46. Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, et al. A randomized
  131. 47. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a
  132. 48. Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB. Calreticulin
  133. 49. McCauliffe DP, Yang YS, Wilson J, Sontheimer RD, Capra JD. The 5'-flanking
  134. region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 1992;267:2557-62.
  135. 51. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one
  136. 52. Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, et al. Calreticulin is
  137. 53. Baksh S, Spamer C, Heilmann C, Michalak M. Identification of the Zn2+ binding
  138. 54. Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB. Localization of the
  139. impaired wound healing in the mouse model. Hautarzt 2002;53:154.
  140. 57. Cai KX, Tse LY, Leung C, Tam PK, Xu R, et al. Suppression of lung tumor
  141. 58. Xiao F, Wei Y, Yang L, Zhao X, Tian L, et al. A gene therapy for cancer based on
  142. the angiogenesis inhibitor, vasostatin. Gene Ther 2002;9:1207-13.
  143. 59. Li L, Yuan YZ, Lu J, Xia L, Zhu Y, et al. Treatment of pancreatic carcinoma by
  144. 61. Tjoelker LW, Seyfried CE, Eddy RL, Jr., Byers MG, et al. Human, mouse, and rat
  145. 63. Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, et al. TROSY-NMR
  146. 64. Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, et al. Functional
  147. 65. Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, et al.
  148. 66. Johnson S, Michalak M, Opas M, Eggleton P. The ins and outs of calreticulin:
  149. from the ER lumen to the extracellular space. Trends Cell Biol 2001;11:122-9.
  150. 67. Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the
  151. endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 1999;189:797-802.
  152. 68. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, et al. Tumor-specific immunity and
  153. 69. Cheng WF, Hung CF, Chen CA, Lee CN, Su YN, et al. Characterization of DNA
  154. 70. Goicoechea S, Pallero MA, Eggleton P, Michalak M, Murphy-Ullrich JE. The
  155. 71. Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. Thrombospondin signaling
  156. 72. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, et al. Calreticulin
  157. 73. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, et al. Calreticulin exposure is
  158. 74. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, et al.
  159. 75. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, et al. C1q
  160. 77. Nanney LB, Woodrell CD, Greives MR, Cardwell NL, Pollins AC, et al.
  161. 78. Sipione S, Ewen C, Shostak I, Michalak M, Bleackley RC. Impaired cytolytic
  162. 79. Pike SE, Yao L, Setsuda J, Jones KD, Cherney B, et al. Calreticulin and
  163. calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 1999;94:2461-8.
  164. 80. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. Endostatin: an
  165. 81. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, et al. Secreted cathepsin L
  166. 82. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, et al. Interaction
  167. 83. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, et al. Human tumstatin
  168. 84. MacDonald NJ, Shivers WY, Narum DL, Plum SM, Wingard JN, et al. Endostatin
  169. 85. Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, et al. Cell
  170. 86. Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, et al. Structure, function
  171. 87. Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, et al. Endostatin inhibits endothelial
  172. and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000;60:5410-3.
  173. 88. Shi H, Huang Y, Zhou H, Song X, Yuan S, et al. Nucleolin is a receptor that
  174. 91. Eder JP, Jr., Supko JG, Clark JW, Puchalski TA, et al. Phase I clinical trial of
  175. 92. Herbst RS, Hess KR, Tran HT, Tseng JE, Mullani NA, et al. Phase I study of
  176. 93. Berger AC, Feldman AL, Gnant MF, Kruger EA, Sim BK, et al. The angiogenesis
  177. 94. Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of
  178. 95. Jiang XD, Dai P, Wu J, Song DA, Yu JM. Inhibitory effect of radiotherapy
  179. 96. Zhu LP, Xing J, Wang QX, Kou L, Li C, et al. Therapeutic efficacy of
  180. 97. Subramanian IV, Bui Nguyen TM, Truskinovsky AM, Tolar J, Blazar BR,
  181. 99. Rocha FG, Chaves KC, Chammas R, Peron JP, Rizzo LV, et al. Endostatin gene
  182. 100. Kulke MH, Bergsland EK, Ryan DP, Enzinger PC, Lynch TJ, et al. Phase II study
  183. 101. Hajitou A, Grignet C, Devy L, Berndt S, Blacher S, et al. The anti-tumoral effect
  184. 102. Kim YM, Hwang S, Pyun BJ, Kim TY, Lee ST, et al. Endostatin blocks vascular
  185. 2001;15:1044-53.
  186. 104. Hanai J, Dhanabal M, Karumanchi SA, Albanese C, Waterman M, et al.
  187. 105. Dixelius J, Cross M, Matsumoto T, Sasaki T, Timpl R, et al. Endostatin regulates