题名

大腸直腸癌中GALNT2或C1GALT1的過度表現與T抗原之增加有關

并列篇名

Overexpression of GALNT2 or C1GALT1 in Colorectal Cancer is Associated with Increased T antigen Expression

DOI

10.6342/NTU.2012.00273

作者

范子涵

关键词

黏蛋白型O-聚醣 ; O-醣基化 ; GALNT1 ; GALNT2 ; Tn抗原 ; Mucin type O-glycan ; O-glycosylation ; GALNT1 ; GALNT10 ; Tn antigen

期刊名称

臺灣大學解剖學暨生物細胞學研究所學位論文

卷期/出版年月

2012年

学位类别

碩士

导师

黃敏銓

内容语文

繁體中文

中文摘要

在台灣地區,惡性腫瘤多年蟬聯十大死因榜首,而大腸直腸癌是排名第三的癌症死因。台灣地區的大腸直腸癌發生率仍不斷上升中。腫瘤相關醣抗原Tn和T抗原是O-聚醣的根部結構,在正常的上皮組織中,Tn和T抗原會經由不同醣類轉移酶轉換成更複雜的結構。Tn抗原的表現和大腸直腸癌的腫瘤組織分化程度有關;T抗原陽性的病患伴隨更高的癌症肝轉移率。至今腫瘤組織中大量表現Tn和T抗原的原因仍不明確。我們試圖從合成Tn、T抗原的轉移酶:GalNAc-transferase (GALNT family)、Core 1 ß-3-galactosyltransferase (C1GALT1),找出癌細胞大量表現Tn、T抗原的原因。我們選定四個候選酶分別是:GALNT1、GALNT2、GALNT10和C1GALT1。我們收集61個大腸直腸癌病人非腫瘤和腫瘤組織,並利用RT-PCR、西方點墨法、免疫組織化學染色法檢視這四個轉移酶在腫瘤組織的表現量,並且找出它們和臨床資料的關聯性。再以免疫組織化學染色法染Tn和T抗原,利用Chi square統計出Tn、T抗原和這四個轉移酶之間的相關性。免疫組織化學染色結果顯示,55%之病人腫瘤組織的GALNT2表現量上升,並且和Tn (p<0.001)和T (p = 0.002)抗原的表現相關。和正常組織相比,過度表現GALNT2的病人有較差的存活率(p = 0.004)。綜合RT-PCR、西方點墨法、免疫組織化學染色法的結果,C1GALT1在67-72%的病人腫瘤中的表現量上升,而且和T抗原表現相關(p = 0.004),而腫瘤中過度表現C1GALT1的病人在癌症完全緩解後,更容易產生復發的情形(p=0.0052)。西方點墨法的結果顯示,41%之病人腫瘤的GALNT1表現量下降(p = 0.009),並且和Tn (p = 0.301)、T (p = 0.592)抗原的表現無關;76%之病人腫瘤的GALNT10表現量下降(p<0.001),並且和Tn (p = 0.294)、T (p = 1.0)抗原的表現無關。根據這些結果我們推測,O-聚醣合成的初始階段中GALNT2和C1GALT1在大腸直腸癌細胞的表現量上升,可能是造成Tn和T抗原過度累積的原因之一,進而增加癌細胞惡性的能力。未來需要更多研究進一步證明我們的假設,並探討GALNT2和C1GALT1作為標靶治療的潛力。

英文摘要

Malignant tumors have been the top cause of death for many years. Colorectal cancer is the third leading cancer death in Taiwan and its incidence is still rising. Tumor associated carbohydrate antigens, Tn and T , are the short O-glycans. Expression of Tn antigen has been associated with differentiation status of colorectal cancer. Patients with T-positive tumors have significantly higher risk to develop liver metastases. The reason for overexpression of Tn and T antigens in tumor tissues remains unclear. To uncover the reason for Tn and T antigen overexpression in colorectal cancer, we selected 3 candidate enzymes from the 20 members of GALNT family, which catalyzed a GalNAc structure to Ser/Thr residue in forming Tn antigen, namely GALNT1, GALNT2, GALNT10, and the core 1 ß-3-galactosyl- transferase (C1GALT1). C1GALT1 is the only enzyme that catalyzes the formation of T antigen from the Tn antigen. We collected 61 samples of paired tumor and non-tumor colorectal tissues. We analyzed the expression levels of the four selected enzymes by RT-PCR, Western blot, and immunohistochemistry and correlated the results with clinicopathologic features. Tn or T antigens were stained by immunohistochemistry, and Chi square was used for statistical analysis. Immunohistochemical results showed that 55% of colorectal cancer patients displayed higher GALNT2 expression and was associated with lower survival rate (p = 0.004). GALNT2 expression was correlated with Tn and T antigen expression. Approximately 67 to 72% patients showed overexpression of C1GALT1 and they tend to recur after complete remission (p = 0.0052). C1GALT1 expression was associated with T antigen expression. Results from Western blotting showed that GALNT1 and GALNT2 were downregulated in 41% (p = 0.009) and 72% (p<0.001) of patients, respectively. Neither GALNT1 nor GALNT10 expression correlated with Tn or T antigen expression. According to these results, we speculate that overexpression of GALNT2 and C1GALT1 might enhance the malignant ability of colorectal cancer through accumulation of Tn and T antigen in cancer. Further study is needed to prove our hypothesis and to investigate GALNT2 and C1GALT1 as potential therapeutic targets for colorectal cancer.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 解剖學暨生物細胞學研究所
参考文献
  1. [2] G.F. Springer, T and Tn, general carcinoma autoantigens, Science, 224 (1984) 1198-1206.
    連結:
  2. [3] B.J. Campbell, I.A. Finnie, E.F. Hounsell, J.M. Rhodes, Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin, The Journal of clinical investigation, 95 (1995) 571-576.
    連結:
  3. [4] G.F. Springer, Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J Mol Med (Berl), 75 (1997) 594-602.
    連結:
  4. [7] A. Almogren, J. Abdullah, K. Ghapure, K. Ferguson, V.V. Glinsky, K. Rittenhouse-Olson, Anti-Thomsen-Friedenreich-Ag (anti-TF-Ag) potential for cancer therapy, Front Biosci (Schol Ed), 4 (2012) 840-863.
    連結:
  5. [8] R.A. De Silva, Q. Wang, T. Chidley, D.K. Appulage, P.R. Andreana, Immunological response from an entirely carbohydrate antigen: design of synthetic vaccines based on Tn-PS A1 conjugates, Journal of the American Chemical Society, 131 (2009) 9622-9623.
    連結:
  6. [9] Z.H. Huang, L. Shi, J.W. Ma, Z.Y. Sun, H. Cai, Y.X. Chen, Y.F. Zhao, Y.M. Li, a Totally Synthetic, Self-Assembling, Adjuvant-Free MUC1 Glycopeptide Vaccine for Cancer Therapy, Journal of the American Chemical Society, 134 (2012) 8730-8733.
    連結:
  7. [10] J. Heimburg-Molinaro, M. Lum, G. Vijay, M. Jain, A. Almogren, K. Rittenhouse-Olson, Cancer vaccines and carbohydrate epitopes, Vaccine, 29 (2011) 8802-8826.
    連結:
  8. [11] G. Poiroux, M. Pitie, R. Culerrier, E. Lafont, B. Segui, E.J. Van Damme, W.J. Peumans, J. Bernadou, T. Levade, P. Rouge, A. Barre, H. Benoist, Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy, PloS one, 6 (2011) e23315.
    連結:
  9. [12] O.V. Glinskii, S. Sud, V.V. Mossine, T.P. Mawhinney, D.C. Anthony, G.V. Glinsky, K.J. Pienta, V.V. Glinsky, Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine, Neoplasia, 14 (2012) 65-73.
    連結:
  10. [13] M.M. Fuster, J.D. Esko, The sweet and sour of cancer: glycans as novel therapeutic targets, Nature reviews. Cancer, 5 (2005) 526-542.
    連結:
  11. [14] M.C. Huang, H.Y. Chen, H.C. Huang, J. Huang, J.T. Liang, T.L. Shen, N.Y. Lin, C.C. Ho, I.M. Cho, S.M. Hsu, C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells, Oncogene, 25 (2006) 3267-3276.
    連結:
  12. [15] D. Kerr, Clinical development of gene therapy for colorectal cancer, Nature reviews. Cancer, 3 (2003) 615-622.
    連結:
  13. [16] J.J. Koornstra, S. de Jong, H. Hollema, E.G. de Vries, J.H. Kleibeuker, Changes in apoptosis during the development of colorectal cancer: a systematic review of the literature, Critical reviews in oncology/hematology, 45 (2003) 37-53.
    連結:
  14. [17] J. Huang, M.I. Che, Y.T. Huang, M.K. Shyu, Y.M. Huang, Y.M. Wu, W.C. Lin, P.H. Huang, J.T. Liang, P.H. Lee, M.C. Huang, Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells, Carcinogenesis, 30 (2009) 1452-1458.
    連結:
  15. [18] D.W. Kufe, Mucins in cancer: function, prognosis and therapy, Nature reviews. Cancer, 9 (2009) 874-885.
    連結:
  16. [20] T. Kawaguchi, H. Takazawa, S. Imai, J. Morimoto, T. Watanabe, M. Kanno, S. Igarashi, Expression of Vicia villosa agglutinin (VVA)-binding glycoprotein in primary breast cancer cells in relation to lymphatic metastasis: is atypical MUC1 bearing Tn antigen a receptor of VVA?, Breast cancer research and treatment, 98 (2006) 31-43.
    連結:
  17. [21] E.P. Bennett, U. Mandel, H. Clausen, T.A. Gerken, T.A. Fritz, L.A. Tabak, Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family, Glycobiology, 22 (2012) 736-756.
    連結:
  18. [23] I. Brockhausen, Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions, EMBO reports, 7 (2006) 599-604.
    連結:
  19. [24] P.M. Coutinho, E. Deleury, G.J. Davies, B. Henrissat, An evolving hierarchical family classification for glycosyltransferases, Journal of molecular biology, 328 (2003) 307-317.
    連結:
  20. [25] S. Hakomori, Glycosylation defining cancer malignancy: new wine in an old bottle, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 10231-10233.
    連結:
  21. [27] P. Burda, M. Aebi, The dolichol pathway of N-linked glycosylation, Biochimica et biophysica acta, 1426 (1999) 239-257.
    連結:
  22. [29] Y. Cao, U.R. Karsten, W. Liebrich, W. Haensch, G.F. Springer, P.M. Schlag, Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation, Cancer, 76 (1995) 1700-1708.
    連結:
  23. [30] S.K. Khaldoyanidi, V.V. Glinsky, L. Sikora, A.B. Glinskii, V.V. Mossine, T.P. Quinn, G.V. Glinsky, P. Sriramarao, MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions, The Journal of biological chemistry, 278 (2003) 4127-4134.
    連結:
  24. [32] E. Tian, K.G. Ten Hagen, Recent insights into the biological roles of mucin-type O-glycosylation, Glycoconjugate journal, 26 (2009) 325-334.
    連結:
  25. [33] K.G. Ten Hagen, T.A. Fritz, L.A. Tabak, All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases, Glycobiology, 13 (2003) 1R-16R.
    連結:
  26. [34] F.K. Hagen, B. Hazes, R. Raffo, D. deSa, L.A. Tabak, Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold, The Journal of biological chemistry, 274 (1999) 6797-6803.
    連結:
  27. [35] M. Tenno, S. Toba, F.J. Kezdy, A.P. Elhammer, A. Kurosaka, Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T1), European journal of biochemistry / FEBS, 269 (2002) 4308-4316.
    連結:
  28. [36] M. Tenno, A. Saeki, A.P. Elhammer, A. Kurosaka, Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1, The FEBS journal, 274 (2007) 6037-6045.
    連結:
  29. [37] M. Tenno, F.J. Kezdy, A.P. Elhammer, A. Kurosaka, Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase 1, Biochemical and biophysical research communications, 298 (2002) 755-759.
    連結:
  30. [38] M.R. Pratt, H.C. Hang, K.G. Ten Hagen, J. Rarick, T.A. Gerken, L.A. Tabak, C.R. Bertozzi, Deconvoluting the functions of polypeptide N-alpha-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling, Chemistry & biology, 11 (2004) 1009-1016.
    連結:
  31. [39] D.J. Gill, H. Clausen, F. Bard, Location, location, location: new insights into O-GalNAc protein glycosylation, Trends in cell biology, 21 (2011) 149-158.
    連結:
  32. [40] T. Kohsaki, I. Nishimori, H. Nakayama, E. Miyazaki, H. Enzan, M. Nomoto, M.A. Hollingsworth, S. Onishi, Expression of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase isozymes T1 and T2 in human colorectal cancer, Journal of gastroenterology, 35 (2000) 840-848.
    連結:
  33. [41] K. Shibao, H. Izumi, Y. Nakayama, R. Ohta, N. Nagata, M. Nomoto, K. Matsuo, Y. Yamada, K. Kitazato, H. Itoh, K. Kohno, Expression of UDP-N-acetyl-alpha-D-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma, Cancer, 94 (2002) 1939-1946.
    連結:
  34. [42] J.M. Guo, H.L. Chen, G.M. Wang, Y.K. Zhang, H. Narimatsu, Expression of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-12 in gastric and colonic cancer cell lines and in human colorectal cancer, Oncology, 67 (2004) 271-276.
    連結:
  35. [43] K.M. Felner, A. Dinter, J.P. Cartron, E.G. Berger, Repressed beta-1,3-galactosyltransferase in the Tn syndrome, Biochimica et biophysica acta, 1406 (1998) 115-125.
    連結:
  36. [44] E.G. Berger, Tn-syndrome, Biochimica et biophysica acta, 1455 (1999) 255-268.
    連結:
  37. [46] K. Yamada, N. Kobayashi, T. Ikeda, Y. Suzuki, T. Tsuge, S. Horikoshi, S.N. Emancipator, Y. Tomino, Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 25 (2010) 3890-3897.
    連結:
  38. [47] A. El-Battari, M. Prorok, K. Angata, S. Mathieu, M. Zerfaoui, E. Ong, M. Suzuki, D. Lombardo, M. Fukuda, Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation, Glycobiology, 13 (2003) 941-953.
    連結:
  39. [1] http://www.doh.gov.tw/
  40. [5] S.H. Itzkowitz, M. Yuan, C.K. Montgomery, T. Kjeldsen, H.K. Takahashi, W.L. Bigbee, Y.S. Kim, Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer, Cancer research, 49 (1989) 197-204.
  41. [6] S.E. Baldus, T.K. Zirbes, F.G. Hanisch, D. Kunze, S.T. Shafizadeh, S. Nolden, S.P. Monig, P.M. Schneider, U. Karsten, J. Thiele, A.H. Holscher, H.P. Dienes, Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: A clinicopathologic study of 264 patients, Cancer, 88 (2000) 1536-1543.
  42. [19] K.L. Carraway, V.P. Ramsauer, B. Haq, C.A. Carothers Carraway, Cell signaling through membrane mucins, BioEssays : news and reviews in molecular, cellular and developmental biology, 25 (2003) 66-71.
  43. [22] P. Van den Steen, P.M. Rudd, R.A. Dwek, G. Opdenakker, Concepts and principles of O-linked glycosylation, Critical reviews in biochemistry and molecular biology, 33 (1998) 151-208.
  44. [26] Y.J. Kim, A. Varki, Perspectives on the significance of altered glycosylation of glycoproteins in cancer, Glycoconjugate journal, 14 (1997) 569-576.
  45. [28] M. Yuan, S.H. Itzkowitz, C.R. Boland, Y.D. Kim, J.T. Tomita, A. Palekar, J.L. Bennington, B.F. Trump, Y.S. Kim, Comparison of T-antigen expression in normal, premalignant, and malignant human colonic tissue using lectin and antibody immunohistochemistry, Cancer research, 46 (1986) 4841-4847.
  46. [31] V.V. Glinsky, G.V. Glinsky, K. Rittenhouse-Olson, M.E. Huflejt, O.V. Glinskii, S.L. Deutscher, T.P. Quinn, The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium, Cancer research, 61 (2001) 4851-4857.
  47. [45] D. Pirulli, S. Crovella, S. Ulivi, C. Zadro, S. Bertok, S. Rendine, F. Scolari, M. Foramitti, P. Ravani, D. Roccatello, S. Savoldi, G. Cerullo, S.G. Lanzilotta, L. Bisceglia, L. Zelante, J. Floege, E. Alexopoulos, D. Kirmizis, G.M. Ghiggeri, G. Frasca, F.P. Schena, A. Amoroso, Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy, Journal of nephrology, 22 (2009) 152-159.