题名

花朵狀氧化鎳摻雜磷作為電催化材料之能源應用

并列篇名

Flower-like Phosphorus-doped Nickel Oxide as an Electrocatalyst for Energy Application

DOI

10.6342/NTU201702610

作者

陳怡琳

关键词

花朵狀形貌 ; 氧化鎳摻雜磷 ; 電觸媒 ; 染料敏化太陽能電池 ; 產氫反應和光電化學系統 ; Flower-like morphology ; Phosphorus-doped nickel oxide ; Electrocatalyst ; Dye-sensitized solar cell ; Hydrogen evolution reaction ; Photoelectrochemical system

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

何國川

内容语文

英文

中文摘要

本論文旨在發展花朵狀氧化鎳摻雜磷作為兩能源領域(染料敏化太陽能電池(染敏電池)和產氫反應)中所使用的電觸媒。該論文被分成兩部分:氧化鎳摻雜磷的材料表徵分析(第3章)和氧化鎳摻雜磷的能源應用,其中又被分成兩個小部分:當作對電極使用於染敏電池中(第4章)和當作陰極使用於水分解(第5章)。 在第三章中,透過XPS分析證明了氧化鎳摻雜磷的化學鍵結及組成。另外,從SEM圖像中觀察到由奈米片推疊成花朵狀的形貌。在合成時以較高的前驅物濃度所生成之產物(氧化鎳摻雜磷-1 (P-NiO-1)和P-NiO-0.75),它們會在退火過程中長成不規則的顆粒以及不完整且具有孔洞的奈米片,而P-NiO-0.5、P-NiO-0.25和P-NiO-0.1則是生長成完整的花朵狀結構。氧化鎳摻雜磷的花朵結構之直徑大小是依照前驅物濃度的高低而有次序地長成。此外,氧化鎳摻雜磷滴在不同的基材(碳布和多孔鎳片)上也會導致且影響氧化鎳摻雜磷的形狀外觀。還有,氧化鎳摻雜磷在碳布上和在多孔鎳片上,會由於它們本身具有弧度的表面而容易將小顆的氧化鎳摻雜磷聚集在某一個地方。 在第四章中,把氧化鎳摻雜磷做成薄膜當作對電極,應用於染敏電池上。花朵狀氧化鎳基本上是作為基體,其形狀可以提供二維傳遞途徑而促進電子傳導。而磷摻雜是為了在氧化鎳的表面上提供更多活性點,使得加速催化三碘化物離子與碘離子之間的反應,而提高其材料的催化能力。氧化鎳摻雜磷透過不同前驅物濃度來控制其生成,使得氧化鎳摻雜磷具有不同的形貌特徵。P-NiO-1因而呈現碎屑聚集,而P-NiO-0.75則是由不完整的奈米片推疊成花朵狀形貌。另外,P-NiO-0.5、P-NiO-0.25和P-NiO-0.1是以完整的花朵狀形態作為催化電極。具有P-NiO-0.5之對電極的染敏電池具有9.05%的光電轉換效率,比起白金對電極的染敏電池(光電轉換效率:8.51%),有著更加優秀的表現。即使在背面照明和昏暗的光線條件下,它的表現都有比白金對電極的染敏電池還要更好。因此,氧化鎳摻雜磷的對電極具有取代昂貴的白金對電極的潛力。 在第五章中,是把氧化鎳摻雜磷電極拿去做水分解中的產氫反應。在所有的基板(FTO,碳布和多孔鎳片)上,氧化鎳摻雜磷皆以每平方公分面積之0.3毫克的負載量,測得最低過電位值。多孔鎳片的電催化能力是三種基板中最好的,所以氧化鎳摻雜磷在多孔鎳片上之電極得到最小值為230 mV(vs. RHE),以及最小的塔弗斜率為每電流為85 mV。此外,搭配第四章的染敏電池所組裝成的光電水分解系統,獲得良好的太陽能轉化氫氣之效率(5.42%)。因此,低成本的氧化鎳摻雜磷在多孔鎳片上作為電極,在水分解中是具有吸引力的產氫電極替代品

英文摘要

This dissertation aimed to develop the flower-like phosphorus-doped nickel oxide (P-NiO) as the electrocatalyst utilized in the two energy fields, dye-sensitized solar cells (DSSCs) and hydrogen evolution reaction (HER). The dissertation is divided into two part: the material characterizations of P-NiO (Chapter 3) and the energy applications of P-NiO, which are separated two section: the counter electrode (CE) for DSSCs (Chapter 4) and the cathode for water splitting (Chapter 5). In the case of the material characterizations of P-NiO, the chemical composition was proved via XPS analysis. The flower-like nanosheets morphology was observed from SEM images. The P-NiO was shattered to irregular particles and porous nanosheets after annealing process in the higher precursor concentrations (P-NiO-1 and P-NiO-0.75), while the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 formed a complete flower-like morphology. The flower-like structure of P-NiO shrank sequential diameters according to the precursor concentrations. Furthermore, P-NiO dropped in the different substrates, carbon cloth (CC) and nickel foam (NF), also led to the variety of appearance. P-NiO-CC and P-NiO-NF easily clustered small units together because of their curved structures. In the case of P-NiO was designed for CEs in the DSSCs, the flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote 2-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3-) to iodide ions (I-) on the surface of the CE. The P-NiO was controlled by a sequencing of precursor concentration, which made the P-NiO possess different features. The debris aggregation occurred in the P-NiO-1, while it led to the incomplete flower-like nanosheets of the P-NiO-0.75. The complete flower-like morphology could be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSCs with P-NiO-0.5 CE has exhibited a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of P-NiO CE to replace the expensive Pt CE. In the case of P-NiO electrode of HER in water splitting, the lowest overpotential (η) all under the P-NiO loading of 0.3 mg cm-2 in the FTO, CC and NF substrates. The electrocatalytic ability of NF is the best among these substrates; thus, P-NiO-NF electrode obtains the smallest η of 230 mV (vs. RHE) and the smallest Tafel slope of 85 mV dec-1. In addition, the photoelectrochemical water splitting built with previous work (DSSC) obtained a good solar-to-hydrogen (ηSTH) of 5.42%. The low-cost P-NiO-NF electrode of HER is an attractive replacement for water splitting.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. 1. M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic Chemistry, 2005, 44, 6841-6851.
    連結:
  2. 3. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, 2015, 51, 15894-15897.
    連結:
  3. 4. M. Grätzel and B. O’Regan, "A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films," Nature, 1991, 353, 737-740.
    連結:
  4. 5. Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin and M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency," Science of Advanced Materials, 2011, 334, 629-634.
    連結:
  5. 6. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Natature Chemistry, 2014, 6, 242-247.
    連結:
  6. 7. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso and Y.-B. Cheng, "Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells," Advanced Functional Materials, 2010, 20, 1301-1305.
    連結:
  7. 8. Q. Tai and X.-Z. Zhao, "Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells," Journal of Materials Chemistry A, 2014, 2, 13207.
    連結:
  8. 9. S. Ahmad, E. Guillén, L. Kavan, M. Grätzel and M. K. Nazeeruddin, "Metal free sensitizer and catalyst for dye sensitized solar cells," Energy & Environmental Science, 2013, 6, 3439.
    連結:
  9. 10. C.-P. Lee, R. Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J. T. Lin and K.-C. Ho, "Recent progress in organic sensitizers for dye-sensitized solar cells," RSC Advances, 2015, 5, 23810-23825.
    連結:
  10. 11. C. T. Li, C. P. Lee, C. T. Lee, S. R. Li, S. S. Sun and K. C. Ho, "Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage," ChemSusChem, 2015, 8, 1244-1253.
    連結:
  11. 12. A. Listorti, B. O’Regan and J. R. Durrant, "Electron transfer dynamics in dye-sensitized solar cells," Chemistry of Materials, 2011, 23, 3381-3399.
    連結:
  12. 13. A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, 2001, 46, 3457–3466.
    連結:
  13. 14. Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao and H. G. Yang, "Rational screening low-cost counter electrodes for dye-sensitized solar cells," Nature Communications, 2013, 4, 1583.
    連結:
  14. 15. M. Wu and T. Ma, "Platinum-free catalysts as counter electrodes in dye-sensitized solar cells," ChemSusChem, 2012, 5, 1343-1357.
    連結:
  15. 17. W. Maiaugree, N. Kongprakaiwoot, A. Tangtrakarn, S. Saekow, S. Pimanpang and V. Amornkitbamrung, "Efficiency enhancement for dye-sensitized solar cells with a porous NiO/Pt counter electrode," Applied Surface Science, 2014, 289, 72-76.
    連結:
  16. 18. B. He, X. Meng and Q. Tang, "Low-cost counter electrodes from CoPt alloys for efficient dye- electrodes for efficient dye-sensitized solar cells," Angewandte Chemie International Edotion in English, 2014, 6, 4812-4818.
    連結:
  17. 19. X. Chen, Q. Tang, B. He, L. Lin and L. Yu, "Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells," Angewandte Chemie International Edotion in English, 2014, 53, 10799-10803.
    連結:
  18. 20. T.-T. Duong, T. Q. Tuan, D. V. A. Dung, N. Van Quy, D.-L. Vu, M. H. Nam, N. D. Chien, S.-G. Yoon and A.-T. Le, "Application of polyaniline nanowires electrodeposited on the FTO glass substrate as a counter electrode for low-cost dye-sensitized solar cells," Current Applied Physics, 2014, 14, 1607-1611.
    連結:
  19. 21. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, "High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells," Journal of Power Sources, 2008, 181, 172-176.
    連結:
  20. 22. T.-L. Zhang, H.-Y. Chen, C.-Y. Su and D.-B. Kuang, "A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells," Journal of Materials Chemistry A, 2013, 1, 1724-1730.
    連結:
  21. 23. Y.-F. Lin, C.-T. Li and K.-C. Ho, "A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells," Journal of Materials Chemistry A, 2016, 4, 384-394.
    連結:
  22. 24. K.-M. Lee, P.-Y. Chen, C.-Y. Hsu, J.-H. Huang, W.-H. Ho, H.-C. Chen and K.-C. Ho, "A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells," Journal of Power Sources, 2009, 188, 313-318.
    連結:
  23. 25. J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang and Q. Meng, "A flexible carbon counter electrode for dye-sensitized solar cells," Carbon, 2009, 47, 2704-2708.
    連結:
  24. 26. Z. Gao, L. Wang, J. Chang, X. Liu, D. Wu, F. Xu, Y. Guo and K. Jiang, "Nitrogen doped porous graphene as counter electrode for efficient dye sensitized solar cell," Electrochimica Acta, 2016, 188, 441-449.
    連結:
  25. 27. J. Balamurugan, R. Thangamuthu and A. Pandurangan, "Effective synthesis of carbon nanotubes of high purity over Cr-Ni-SBA-15 and its application in high performance dye-sensitized solar cells," RSC Advances, 2013, 3, 4321.
    連結:
  26. 28. H. Fang, C. Yu, T. Ma and J. Qiu, "Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells," Chemical Communications, 2014, 50, 3328-3330.
    連結:
  27. 29. S. N. Yun, A. Hagfeldt and T. L. Ma, " Pt-free counter electrode for dye-sensitized solar cells with high efficiency," Advanced Materials, 2014, 26, 6210-6237.
    連結:
  28. 30. Q. W. Jiang, S. L. G. R. Li and X. P. Gao, "Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells," Journal of Physical Chemistry C, 2010, 114, 13397–13401.
    連結:
  29. 31. Y. Y. Dou, G. R. Li, J. Song and X. P. Gao, "Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells," Physical Chemistry Chemistry Physical, 2012, 14, 1339-1342.
    連結:
  30. 32. M. S. Wu and J. F. Wu, "Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells," Chemical Communications, 2013, 49, 10971-10973.
    連結:
  31. 33. H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo and Q. Meng, "Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique," Energy & Environmental Science, 2011, 4, 2630.
    連結:
  32. 34. X. Sun, J. Dou, F. Xie, Y. Li and M. Wei, "One-step preparation of mirror-like NiS nanosheets on ITO for the efficient counter electrode of dye-sensitized solar cells," Chemical Communications, 2014, 50, 9869-9871.
    連結:
  33. 35. W. Zhao, T. Lin, S. Sun, H. Bi, P. Chen, D. Wan and F. Huang, "Oriented single-crystalline nickel sulfidenanorod arrays: “two-in-one” counter electrodes for dye-sensitized solar cells," Journal of Materials Chemistry A, 2013, 1, 194-198.
    連結:
  34. 36. Y. Xiao, G. Han, H. Zhou, Y. Li and J.-Y. Lin, "Nickel sulfide counter electrodes enhanced by hydrosulphuric acid hydrothermal treatments for use in Pt-free dye-sensitized solar cells," Electrochimica Acta, 2015, 155, 103-109.
    連結:
  35. 37. G. Yue, F. Li, F. Tan, G. Li, C. Chen and J. Wu, "Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells," RSC Advances, 2014, 4, 64068-64074.
    連結:
  36. 38. G. Yue, F. Tan, F. Li, C. Chen, W. Zhang, J. Wu and Q. Li, "Enhanced performance of flexible dye-sensitized solar cell based on nickel sulfide/polyaniline/titanium counter electrode," Electrochimica Acta, 2014, 149, 117-125.
    連結:
  37. 39. J. Song, G. R. Li, C. Y. Wu and X. P. Gao, "Metal sulfide counter electrodes for dye-sensitized solar cells: A balanced strategy for optical transparency and electrochemical activity," Journal of Power Sources, 2014, 266, 464-470.
    連結:
  38. 40. C.-T. Lee, J.-D. Peng, C.-T. Li, Y.-L. Tsai, R. Vittal and K.-C. Ho, "Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells," Nano Energy, 2014, 10, 201-211.
    連結:
  39. 41. J. Guo, Y. Shi, Y. Chu and T. Ma, "Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells," Chemical Communications, 2013, 49, 10157-10159.
    連結:
  40. 42. X. Zou and Y. Zhang, "Noble metal-free hydrogen evolution catalysts for water splitting," Chemical Society Reviews, 2015, 44, 5148-5180.
    連結:
  41. 43. J. A. Turner, "A realizable renewable energy future, science of advanced materials," Science of Advanced Materials, 1999, 285, 687–689.
    連結:
  42. 44. T. Hisatomi, J. Kubota and K. Domen, "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting," Chemical Society Reviews, 2014, 43, 7520-7535.
    連結:
  43. 45. W. Sheng, H. A. Gasteiger and Y. Shao-Horn, "Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes," Journal of The Electrochemical Society, 2010, 157, B1529-B1536.
    連結:
  44. 46. S. P. Lynch, "Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals," Scripta Metallurgica, 1979, 13, 1051-1056.
    連結:
  45. 47. J. Flis, S. Ashok, N. S. Stoloff and D. J. Duquette, "Hydrogen embrittlement amorphous alloys based on iron and nickel," Acta Metallurgica, 1987, 35, 2071-2079.
    連結:
  46. 49. J. Woodtli and R. Kieselbach, "Damage due to hydrogen embrittlement and stresscorrosion cracking," Engineering Failure Analysis, 2000, 7, 427-450.
    連結:
  47. 50. N. Jiang, B. You, M. Sheng and Y. Sun, "Bifunctionality and mechanism of electrodeposited nickel-phosphorous films for efficient overall water splitting," ChemCatChem, 2016, 8, 106-112.
    連結:
  48. 51. P. Quaino, F. Juarez, E. Santos and W. Schmickler, "Volcano plots in hydrogen electrocatalysis - uses and abuses," Beilstein Journal of Nanotechnology, 2014, 5, 846-854.
    連結:
  49. 52. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera, "Solar energy supply and storage for the legacy and nonlegacy worlds," Chemical Reviews, 2010, 110, 6474–6502.
    連結:
  50. 53. J. B. Yadav, J.-W. Park, Y.-J. Cho and O.-S. Joo, "Intermediate hydroxide enforced electrodeposited platinum film for hydrogen evolution reaction," International Journal of Hydrogen Energy, 2010, 35, 10067-10072.
    連結:
  51. 54. S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo and H. Kotani, "Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts," Energy & Environmental Science, 2011, 4, 2754.
    連結:
  52. 55. M. M. Jaksic, "Hypo-hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions," International Journal of Hydrogen Energy, 2001, 26, 559-578.
    連結:
  53. 57. D. Kong, H. Wang, Z. Lu and Y. Cui, "CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction," Journal of the American Chemical Society, 2014, 136, 4897-4900.
    連結:
  54. 58. M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding and S. Jin, "High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures," Journal of the American Chemical Society, 2014, 136, 10053-10061.
    連結:
  55. 59. M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers and S. Jin, "Highly active hydrogen evolution catalysis from metallic WS2 nanosheets," Energy & Environmental Science, 2014, 7, 2608.
    連結:
  56. 60. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, "Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets," Journal of the American Chemical Society, 2013, 135, 10274-10277.
    連結:
  57. 61. S. Chen, J. Duan, Y. Tang, B. Jin and S. Zhang Qiao, "Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst," Nano Energy, 2015, 11, 11-18.
    連結:
  58. 62. J. Tian, Q. Liu, A. M. Asiri and X. Sun, "Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14," Journal of the American Chemical Society, 2014, 136, 7587-7590.
    連結:
  59. 63. H. Vrubel and X. Hu, "Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions," Angewandte Chemie International Edotion in English, 2012, 51, 12703-12706.
    連結:
  60. 64. Y. Xu, R. Wu, J. Zhang, Y. Shi and B. Zhang, "Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction," Chemical Communications, 2013, 49, 6656-6658.
    連結:
  61. 65. L. An, L. Huang, P. Zhou, J. Yin, H. Liu and P. Xi, "A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures," Advanced Functional Materials, 2015, 25, 6814-6822.
    連結:
  62. 66. C. Wang, T. Ding, Y. Sun, X. Zhou, Y. Liu and Q. Yang, "Ni12P5 nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties," Nanoscale, 2015, 7, 19241-19249.
    連結:
  63. 67. Y. Pan, N. Yang, Y. Chen, Y. Lin, Y. Li, Y. Liu and C. Liu, "Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity," Journal of Power Sources, 2015, 297, 45-52.
    連結:
  64. 68. X. Wang, Y. V. Kolen'ko, X. Q. Bao, K. Kovnir and L. Liu, "One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation," Angewandte Chemie International Edotion in English, 2015, 54, 8188-8192.
    連結:
  65. 69. Z. Jin, P. Li, X. Huang, G. Zeng, Y. Jin, B. Zheng and D. Xiao, "Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution," Journal of Materials Chemistry A, 2014, 2, 18593-18599.
    連結:
  66. 70. H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, "Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting," Chemistry of Materials, 2015, 27, 5702-5711.
    連結:
  67. 71. J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu and P. Xi, "Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting," Nanoscale, 2016, 8, 1390-1400.
    連結:
  68. 72. Z. Pu, Y. Luo, A. M. Asiri and X. Sun, "Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film," ACS Applied Material Interfaces, 2016, 8, 4718-4723.
    連結:
  69. 73. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, "Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis," Journal of Physical Chemistry B, 2000, 104, 8920-8924.
    連結:
  70. 74. D. Bae, B. Seger, P. C. Vesborg, O. Hansen and I. Chorkendorff, "Strategies for stable water splitting via protected photoelectrodes," Chemical Society Reviews, 2017, 46, 1933-1954.
    連結:
  71. 75. A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemical Society Reviews, 2009, 38, 253-278.
    連結:
  72. 76. D. A. Hoogeveen, M. Fournier, S. A. Bonke, X.-Y. Fang, A. J. Mozer, A. Mishra, P. Bäuerle, A. N. Simonov and L. Spiccia, "Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst," Electrochimica Acta, 2016, 219, 773-780.
    連結:
  73. 77. S. A. Bonke, M. Wiechen, D. R. MacFarlane and L. Spiccia, "Renewable fuels from concentrated solar power: towards practical artificial photosynthesis," Energy & Environmental Science, 2015, 8, 2791-2796.
    連結:
  74. 78. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, "NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting," Angewandte Chemie International Edotion in English, 2015, 54, 9351-9355.
    連結:
  75. 79. B.E. Conway and B. V. Tilak, "Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H," Electrochimica Acta, 2002, 47, 3571-3594.
    連結:
  76. 80. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, "MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction," Journal of the American Chemical Society, 2011, 133, 7296-7299.
    連結:
  77. 81. Michael F. Weber and M. J. Dignam, "Efficiency of splitting water with semiconducting photoelectrodes," Journal of the Electrochemical Society, Journal of the electrochemical society, 1984, 131, 1258-1265.
    連結:
  78. 82. J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel and K. Sivula, "Highly efficient water splitting by a dual-absorber tandem cell," Nature Photonics, 2012, 6, 824-828.
    連結:
  79. 83. J. Brillet, M. Cornuz, F. L. Formal, J.-H. Yum, M. Grätzel and K. Sivula, "Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting," Journal of Materials Research, 2011, 25, 17-24.
    連結:
  80. 84. M. A. Peck and M. A. Langell, "Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS, chemistry of materials," Chemistry of Materials, 2012, 24, 4483-4490.
    連結:
  81. 85. Z. Zheng, J. Chen, Y. Hu, W. Wu, J. Hua and H. Tian, "Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells," Journal of Material Chemistry C, 2014, 2, 8497-8500.
    連結:
  82. 86. W. Yang, X. Ma, X. Xu, Y. Li, S. I. Raj, G. Ning, A. Wang and S. Chen, "Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells," Journal of Power Sources, 2015, 282, 228-234.
    連結:
  83. 87. C. H. Yoon, R. Vittal, J. Lee, W.-S. Chae and K.-J. Kim, "Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode," Electrochimica Acta, 2008, 53, 2890-2896.
    連結:
  84. 88. S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair and A. S. Nair, "A review on counter electrode materials in dye-sensitized solar cells," Journal of Material Chemistry A, 2014, 2, 4474-4490.
    連結:
  85. 89. M.-S. Wu, C.-J. Chung and Z.-Z. Ceng, "Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells," RSC Advances, 2015, 5, 4561-4567.
    連結:
  86. 90. F. Gong, X. Xu, Z. Li, G. Zhou and Z. S. Wang, "NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells," Chemical Communications, 2013, 49, 1437-1439.
    連結:
  87. 91. M.-S. Fan, C.-P. Lee, C.-T. Li, Y.-J. Huang, R. Vittal and K.-C. Ho, "Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells," Electrochimica Acta, 2016, 211, 164-172.
    連結:
  88. 92. J. Soo Kang, M. A. Park, J. Y. Kim, S. Ha Park, D. Young Chung, S. H. Yu, J. Kim, J. Park, J. W. Choi, K. Jae Lee, J. Jeong, M. Jae Ko, K. S. Ahn and Y. E. Sung, "Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells," Scientific Reports, 2015, 5, 10450.
    連結:
  89. 93. C. T. Li, H. Y. Chang, Y. Y. Li, Y. J. Huang, Y. L. Tsai, R. Vittal, Y. J. Sheng and K. C. Ho, ACS Appl Mater Interfaces, 2015, 7, 28254-28263.
    連結:
  90. 94. M. Wu, J. Bai, Y. Wang, A. Wang, X. Lin, L. Wang, Y. Shen, Z. Wang, A. Hagfeldt and T. Ma, "High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells," Journal of Materials Chemistry,Journal of Materials Chemistry, 2012, 22, 11121.
    連結:
  91. 95. X. Zhang, Y. Yang, S. Guo, F. Hu and L. Liu, "Mesoporous Ni0.85Se nanospheres grown in situ on graphene with high performance in dye-sensitized solar cells," ACS Applied Material & Interfaces,2015, 7, 8457-8464.
    連結:
  92. 96. A. Salimi, E. Sharifi, A. Noorbakhsh and S. Soltanian, "Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity," Biosensors and Bioelectronics, 2007, 22, 3146-3153.
    連結:
  93. 97. K. Nakaoka, J. Ueyama and K. Ogura, "Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films," Journal of Electroanalytical Chemistry, 2004, 571, 93-99.
    連結:
  94. 98. G. H. Guai, M. Y. Leiw, C. M. Ng and C. M. Li, "Sulfur-doped nickel oxide thin film as an alternative to Pt for dye-sensitized solar cell counter electrodes," Advanced Energy Materials, 2012, 2, 334-338.
    連結:
  95. 99. Z. Wang, P. Li, Y. Chen, J. He, J. Liu, W. Zhang and Y. Li, "Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells," Journal of Power Sources, 2014, 263, 246-251.
    連結:
  96. 100. C. Yu, Z. Liu, X. Meng, B. Lu, D. Cui and J. Qiu, "Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction," Nanoscale, 2016, 8, 17458-17464.
    連結:
  97. 101. H. Wang, W. Wei and Y. H. Hu, "NiO as an efficient counter electrode catalyst for dye-sensitized solar cells," Topics in Catalysis, 2013, 57, 607-611.
    連結:
  98. 102. T. Okumura, T. Sugiyo, T. Inoue, M. Ikegami and T. Miyasaka, "Nickel oxide hybridized carbon film as an efficient mesoscopic cathode for dye-sensitized solar cells," Journal of the Electrochemical Society, 2013, 160, H155-H159.
    連結:
  99. 103. R. Bajpai, S. Roy, N. Koratkar and D. S. Misra, "NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell," Carbon, 2013, 56, 56-63.
    連結:
  100. 104. V. D. Dao, L. L. Larina, K. D. Jung, J. K. Lee and H. S. Choi, "Graphene-NiO nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells," Nanoscale, 2014, 6, 477-482.
    連結:
  101. 105. M. R. Al-bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng and Y. Gao, "NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells," Applied Surface Science, 2015, 331, 333-338.
    連結:
  102. 106. W. Ahmad, L. Chu, M. R. Al-bahrani, X. Ren, J. Su and Y. Gao, "P-type NiO nanoparticles enhanced acetylene black as efficient counter electrode for dye-sensitized solar cells," Materials Research Bulletin, 2015, 67, 185-190.
    連結:
  103. 107. M. R. Al-bahrani, W. Ahmad, H. F. Mehnane, Y. Chen, Z. Cheng and Y. Gao, "Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells," Nano-Micro Letters,Nano-Micro Letters, 2015, 7, 298-306.
    連結:
  104. 108. L. Li, P. Zhu, S. Peng, M. Srinivasan, Q. Yan, A. S. Nair, B. Liu and S. Samakrishna, The "Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells," The Journal of Physical Chemistry C, 2014, 118, 16526-16535.
    連結:
  105. 109. G. Wang, J. Zhang, S. Kuang, S. Liu and S. Zhuo, "The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells," Journal of Power Sources, 2014, 269, 473-478.
    連結:
  106. 110. J. H. Zeng, D. Chen, Y. F. Wang and B. B. Jin, "Graphite powder film-supported Cu2S counter electrodes for quantum dot-sensitized solar cells," Journal of Material Chemistry C, 2015, 3, 12140-12148.
    連結:
  107. 111. Y. Zheng, M. Zhang and P. Gao, "Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors," Materials Research Bulletin, 2007, 42, 1740-1747.
    連結:
  108. 112. G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park and X. W. Lou, "Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors," Energy & Environmental Science, 2012, 5, 9453.
    連結:
  109. 113. H. Wang, K. Sun, F. Tao, D. J. Stacchiola and Y. H. Hu, "3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells," Angewandte Chemie International Edotion in English, 2013, 52, 9210-9214.
    連結:
  110. 114. W. Wang, X. Pan, W. Liu, B. Zhang, H. Chen, X. Fang, J. Yao and S. Dai, "FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells," Chemical Communications,, 2014, 50, 2618-2620.
    連結:
  111. 115. B. Zhang, D. Wang, Y. Hou, S. Yang, X. H. Yang, J. H. Zhong, J. Liu, H. F. Wang, P. Hu, H. J. Zhao and H. G. Yang, "Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells," Scientific Reports, 2013, 3, 1836.
    連結:
  112. 116. M. Zheng, J. Huo, Y. Tu, J. Wu, L. Hu and S. Dai, "Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells," Electrochimica Acta, 2015, 173, 252-259.
    連結:
  113. 117. M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature, 2001, 414, 332-337.
    連結:
  114. 118. M. Momirlan and T. Veziroglu, "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet," International Journal of Hydrogen Energy, 2005, 30, 795-802.
    連結:
  115. 119. Y. Yamada, T. Miyahigashi, K. Ohkubo and S. Fukuzumi, "Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles," Physical Chemistry Chemistry Physical, 2012, 14, 10564-10571.
    連結:
  116. 120. R. Shinnar, "The hydrogen economy, fuel cells, and electric cars," Technology in Society, 2003, 25, 455-476.
    連結:
  117. 121. S. Evangelisti, C. Tagliaferri, D. J. L. Brett and P. Lettieri, "Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles," Journal of Cleaner Production, 2017, 142, 4339-4355.
    連結:
  118. 122. Y. Pan, Y. Liu and C. Liu, "Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution," Journal of Power Sources, 2015, 285, 169-177.
    連結:
  119. 123. Y. Yamada, K. Yano and S. Fukuzumi, "Photocatalytic hydrogen evolution using 9-phenyl-10-methyl-acridinium ion derivatives as efficient electron mediators and Ru-based catalysts," Australian Journal of Chemistry, 2012, 65, 1573.
    連結:
  120. 124. Y. Yamada, S. Shikano and S. Fukuzumi, "Ni-Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H2 evolution," RSC Advances, 2015, 5, 44912-44919.
    連結:
  121. 125. Arthur J. Esswein and D. G. Nocera, "Hydrogen Production by Molecular Photocatalysis," Chemical Reviews, 2007, 107, 4022-4047.
    連結:
  122. 126. J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, "Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction," Energy & Environmental Science, 2014, 7, 1919.
    連結:
  123. 127. R. Peng, L. Liang, Z. D. Hood, A. Boulesbaa, A. Puretzky, A. V. Ievlev, J. Come, O. S. Ovchinnikova, H. Wang, C. Ma, M. Chi, B. G. Sumpter and Z. Wu, "In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction," ACS Catalysis, 2016, 6, 6723-6729.
    連結:
  124. 128. Y. Guo, C. Shang and E. Wang, "An efficient CoS2/CoSe2 hybrid catalyst for electrocatalytic hydrogen evolution," Journal of Material Chemistry A, 2017, 5, 2504-2507.
    連結:
  125. 129. M. Shen, A. Han, X. Wang, Y. G. Ro, A. Kargar, Y. Lin, H. Guo, P. Du, J. Jiang, J. Zhang, S. A. Dayeh and B. Xiang, "Atomic scale analysis of the enhanced electro- and photo-catalytic activity in high-index faceted porous NiO nanowires," Scientific Reports, 2015, 5, 8557.
    連結:
  126. 130. X. Yan, L. Tian and X. Chen, "Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction," Journal of Power Sources, 2015, 300, 336-343.
    連結:
  127. 132. Z. Zhang, S. Liu, F. Xiao and S. Wang, "Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting," ACS Sustainable Chemistry & Engineering, 2017, 5, 529-536.
    連結:
  128. 133. Y. F. Xu, M. R. Gao, Y. R. Zheng, J. Jiang and S. H. Yu, "Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen," Angewandte Chemie International Edotion in English, 2013, 52, 8546-8550.
    連結:
  129. 134. M. Popczyk, A. Budniok and A. Lasia, "Electrochemical properties of Ni-P electrode materials modified with nickel oxide and metallic cobalt powders," International Journal of Hydrogen Energy, 2005, 30, 265-271.
    連結:
  130. 135. W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li and S. Chen, "Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction," Nano Energy, 2016, 28, 29-43.
    連結:
  131. 136. C.-L. Hsu, Y.-H. Chang, T.-Y. Chen, C.-C. Tseng, K.-H. Wei and L.-J. Li, "Enhancing the electrocatalytic water splitting efficiency for amorphous MoSx," International Journal of Hydrogen Energy, 2014, 39, 4788-4793.
    連結:
  132. 138. X. Shi, H. Jeong, S. J. Oh, M. Ma, K. Zhang, J. Kwon, I. T. Choi, I. Y. Choi, H. K. Kim, J. K. Kim and J. H. Park, "Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling," Nature Communications, 2016, 7, 11943.
    連結:
  133. 139. S. Y. Chae, S. J. Park, O.-S. Joo, B. K. Min and Y. J. Hwang, Spontaneous solar water splitting by DSSC/CIGS tandem solar cells," Solar Energy, 2016, 135, 821-826.
    連結:
  134. 140. K. Fuku, N. Wang, Y. Miseki, T. Funaki and K. Sayama, "Photoelectrochemical reaction for the efficient production of hydrogen and high-value-added oxidation reagents," ChemSusChem, 2015, 8, 1593-1600.
    連結:
  135. 2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables (version 48)," Progress in Photovoltaics: Research and Applications, 2016, 24, 905-913.
  136. 16. M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel and T. Ma, "Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells," Journal of the American Chemical Society, 2012, 134, 3419-3428.
  137. 48. M. R. L. Jr., G. R. C. Jr., J. A. Donovan and D. E. R. Jr., "Hydrogen embrittlement of metals," Materials Science and Engineering, 1972, 10, 357-368.
  138. 56. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, ACS Catalysis, 2013, 3, 166-169.
  139. 131. M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang and H. Dai, "Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis," Nature Communications, 2014, 5, 4695.
  140. 137. H. Fei, J. Dong, M. J. Arellano-Jimenez, G. Ye, N. Dong Kim, E. L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen and J. M. Tour, "Atomic cobalt on nitrogen-doped graphene for hydrogen generation," Nature Communications, 2015, 6, 8668.