题名

氟與氰基取代的有機小分子材料之合成、性質與太陽能電池應用

并列篇名

Synthesis, Properties and Application of Fluorinated and Cyanated Small Molecular Materials for Organic Solar Cells

DOI

10.6342/NTU201701355

作者

劉曉橋

关键词

有機小分子材料 ; Small Molecular Materials

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

汪根欉

内容语文

繁體中文

中文摘要

有機太陽能電池 (OSCs) 相較於其他再生能源,具有低成本、輕量化、材料多樣性與可調性等優點,故近年來許多研究致力於開發新的元件架構與新的有機材料來提升太陽能電池的效率與耐久度。而小分子有機材料的優勢在於純化相對容易,每批品質一致,並且分子量低有利於蒸鍍製程。 本篇論文敘述設計合成出7個以 DAA 為架構之小分子電子予體,搭配 C70為電子受體應用於蒸鍍製程中有不錯得元件效率表現,探討分子結構對物化性質、晶體排列之影響及元件效率的關係。第一章介紹有機太陽能電池的基本原理與分子設計策略;第二章描述合成出以高平面性的強推電子基團雙噻吩並吡咯為中心,搭配引入單氟原子在苯並噻二唑為拉電子基團的染料,其中 DTPFoCN 達到5.1% 效率。在第三章中,以推電子基團 Ditolylaminophenyl 搭配苯並噻二唑, 分別引入雙氟原子與不同位相的氰基增強尾端拉電子基團的能力,更有效的降低LUMO能階,與其對照組比較四個分子的吸收光譜皆有紅移現象,其中DTCPBTCN2 效率最佳可達到5.4%。延伸合成噻吩取代苯環為架橋的DTCTBTCN3 結構,得到吸光更紅移的小分子。

英文摘要

Organic photovoltaics (OPVs) have the advantages of low manufacturing cost, environment friendly, material diversification and tenability. Therefore many studies have focused on the development of new organic materials in recent years to enhance the solar conversion efficiency and stability. In contrast to the polymers, small molecule organic compounds have consistent quality, well-defined structure and lower molecular weight, conducive to the evaporation process. Recently, a class of molecules with donor-acceptor-acceptor (D-A-A*) structure developed by our group can achieve a power conversion efficiency (PCE) of 6.80%. Based on this molecular architecture, we further introduced rigid and coplanar dithienopyrrole as electron donating part (D) to couple with benzothiadiazolecarbonitrile (A-A*), giving DTPFiCN and DTPFoCN. On the other hand, we introduced different numbers of fluorines and cyano groups into benzothiadiazole to enhance the ability of electron withdrawing, giving DTCPFFBTCN, DTCPiFBTCN, DTCPBTCN2 and DTCPBTCN3, to investigate the inductive effect and resonance effect of different substituted position. We also changed π-spacer to enhance the electron donating ability and quinoid character, giving DTCTBTCN3. Their photophysical and electrochemical properties, crystal packing, and photovoltaic performance of these seven molecules are disused.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. (3)Sritharan, K.; Strobl, C. J.; Schneider, M. F.; Wixforth, A. Appl. Phys. Lett. 2006, 88, 054102.
    連結:
  2. (4)Tress, W.; Merten, A.; Furno, M.; Hein, M.; Leo, K.; Riede, M. Adv. Energy Mater. 2013, 3, 631–638.
    連結:
  3. (9)Chen, Y. H.; Lin, L. Y.; Lu, C. W.; Lin, F.; Huang, Z. Y.; Lin, H. W.; Wang, P. H.; Liu, Y. H.; Wong, K. T.; Wen, J.; Miller, J.; Darling, S. B. J. Am. Chem. Soc. 2012, 134, 33, 13616–13623.
    連結:
  4. (13)Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 3539–3547.
    連結:
  5. (20)Gupta, V.; Kyaw, A. K.; Wang, D. H.; Chand, S.; Bazan, G. C.; Heeger, A. J. Sci. Rep. 2013, 3, 1965.
    連結:
  6. (2)Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 3539–3547.
    連結:
  7. (6)Lu, H. I.; Lu, C. W.; Lee, Y .C.; Lin, H. W.; Lin, L. Y.; Lin, F.; Chang, J. H.; Wu, C. I.; Wong, K. T. Chem. Mater. 2014, 26, 15, 4361–4367.
    連結:
  8. (7)Lin, L. Y.; Tsai, C. H.; Lin, F.; Huang, T. W.; Chou, S. H.; Wu, C. C.; Wong, K. T. Tetrahedron. 2012, 68, 36, 7509–7516.
    連結:
  9. (13)Gunderson, L. L. Acta Chim. Scand. 1996, 50, 58–63.
    連結:
  10. (10) Stenlid, J. H.; Brinck, T. J. Org. Chem. 2017, 82, 6, 3072–3083.
    連結:
  11. (12) Halama, A.; Kaválek, J.; Macháček, V.; Weidlich, T. J. Chem. Soc., Perkin Trans. 1, 1999, 1839-1846.
    連結:
  12. (13) Gallardo, I.; Guirado, G.; Marquet, J. J. Org. Chem. 2002, 67, 8, 2548–2555.
    連結:
  13. (14) Mąkosza, M. Chem. Soc. Rev. 2010, 39, 2855-2868.
    連結:
  14. (10)Stenlid, J. H.; Brinck, T. J. Org. Chem. 2017, 82, 6, 3072–3083.
    連結:
  15. (14)Mąkosza, M. Chem. Soc. Rev. 2010, 39, 2855-2868.
    連結:
  16. 1-5 參考文獻
  17. (1)http://www.chyxx.com/industry/201602/386494.html
  18. (2)https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
  19. (5)Zhang, W.; Tse, S. C.; Lu, J.; Tao, Y.; Wong, M. S. Journal of Materials Chemistry, 2010, 2182-2189.
  20. (6)Kronenberg, N. M.; Deppisch, M.; Würthner, F.; Lademann, H. W. A.; Deing, K.; Meerholz, K. Chem. Commun. 2008, 6489.
  21. (7)Bürckstümmer, H.; Kronenberg, N. M.; Gsänger, M.; Stolte, M.; Meerholz, K.; Würthner, F. J. Mater. Chem. 2010, 20, 240-243.
  22. (8)Steinmann, V.; Kronenberg, N. M.; Lenze, M. R.; Graf, S. M.; Hertel, D.; Meerholz, K.; Bürckstümmer, H.; Tulyakova, E. V.; Würthner, F. Adv. Energy Mater. 2011, 888–893.
  23. (10)Zou, Y.; Holst, J.; Zhang, Y.; Holmes, R. J. J. Mater. Chem. A. 2014, 2, 12397-12402.
  24. (11)Griffith, O. L.; Liu, X.; Amonoo, J. A.; Djurovich, P. I.; Thompson, M. E.; Green, P. F. ; Forrest, S. R. Phys. Rev. 2015, 92, 085404.
  25. (12)Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W.; Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.; Kippelen, B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20, 123.
  26. (14)Weidelener, M.; Wessendorf, C. D.; Hanisch, J.; Ahlswede, E.; Götz, G.; Lindén, M.; Schulz, G.; Mena-Osteritz, E.; Mishra, A.; Bäuerle, P. Chem. Commun. 2013, 49, 10865-10867.
  27. (15)Li, M.; Ni, W.; Feng, H.; Kan, B.; Wan, X.; Zhang, Y.; Yang, X.; Chen, Y. Chin. J. Chem. 2015, 33, 852–858.
  28. (16)Liu, D.; Zhao, W.; Zhang, S.; Ye, L.; Zheng, Z.; Cui, Y.; Chen, Y.; Hou, J. Macromolecules. 2015, 48, 15, 5172–5178.
  29. (17)Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 21, 7148–7151.
  30. (18)Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Nat. Commun. 2016, 7, 13740.
  31. (19)Van der Poll, T. S.; Love, J. A.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
  32. (21)Nazim, M.; Ameen, S.; Seo, H. K.; Shin, H.S. Sci. Rep. 2015, 5, 11143.
  33. (22)Kietzke, T.; Hörhold, H.-H.; Neher, D. Chem. Mater. 2005, 17, 6532–6537.
  34. (23)Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
  35. (24)Holcombe, T. W.; Woo, C. H.; Kavulak, D. F. J.; Thompson, B. C.; Fréchet, J. M. J. J. Am. Chem. Soc. 2009, 131, 14160–14161.
  36. (25)Patil, Y.; Misra, R.; Keshtov, M. L.; Sharma, G. D. J. Mater. Chem. A. 2017, 5, 3311-3319.
  37. (26)Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
  38. 2-4 參考文獻
  39. (1)Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W.; Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.; Kippelen, B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20, 123.
  40. (3)Weidelener, M.; Wessendorf, C. D.; Hanisch, J.; Ahlswede, E.; Götz, G.; Lindén, M.; Schulz, G.; Mena-Osteritz, E.; Mishra, A.; Bäuerle, P. Chem. Commun. 2013, 49, 10865-10867.
  41. (4)Li, M.; Ni, W.; Feng, H.; Kan, B.; Wan, X.; Zhang, Y.; Yang, X.; Chen, Y. Chin. J. Chem. 2015. 33, 852–858.
  42. (5)Barlow, S. A.; Odom, K.; Lancaster, Y. A.; Getmanenko, R.; Mason, V.; Coropceanu, J.‐L.; Brédas, S. R.; Marder, J. Phys. Chem. B. 2010, 114, 14397.
  43. (8)Evenson, S. J.; Pappenfus, T. M.; Delgado, M. C. R.; Radke-Wohlers, K. R.; Navarrete, J. T. L.; Rasmussen, S. C. Phys. Chem. Chem. Phys. 2012, 14, 6101.
  44. (9)Mitsudo, K.; Shimohara, S.; Mizoguchi, J.; Mandai, H.; Suga, S. Org. Lett. 2012, 14, 11, 2702–2705.
  45. (10)Tamilavan, V.; Song, M.; Kim, S.; Agneeswari, R.; Kang, J. W.; Hyun, M. H. Polymer. 2013, 54, 3198-3205.
  46. (11)Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
  47. (12)Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.; Pipik, B.; King, S.; Verhoeven, T. R. Synth. Commun. 1994, 24, 887–890.
  48. (14)Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679–9694.
  49. (1) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 5, 1806–1815.
  50. (2) Nguyen, T. L.; Choi, H.; Ko, S.-J. M.; Uddin, A.; Walker, B.; Yum, S.; Jeong, J.-E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040-3051.
  51. (3) Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
  52. (4) Cha, H.; Kim, H. N.; An, T. K.; Kang, M. S.; Kwon, S. K.; Kim, Y. H.; Park, C. E. ACS Appl. Mater. Interfaces. 2014, 6, 18, 15774–15782.
  53. (5) Casey, A.; Green, J. P.; Tuladhar, P. S.; Kirkus, M.; Han, Y.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. A. 2017, 5, 6465-6470.
  54. (6) Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
  55. (7) Livi, F.; Zawacka, N. K.; Angmo, D.; Jørgensen, M.; Krebs, F. C.; Bundgaard, E. Macromolecules. 2015, 48, 11, 3481–3492.
  56. (8) Cohen, D. T.; Buchwald, S. L. Org Lett. 2015, 17, 2, 202–205.
  57. (9) Kularatne, R. S.; Taenzler, F. J.; Magurudeniya, H. D.; Du, J.; Murphy, J. W.; Sheina, E. E.; Gnade, B. E.; Biewer, M. C.; Stefan, M. C. J. Mater. Chem. A. 2013, 1, 15535-15543.
  58. (11) http://chem.rutgers.edu/sites/default/files/coursefiles/courses_sp11/316/restricted/Notes-ResonanceandInductiveEffectsinAromaticCompounds.pdf
  59. (15) Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
  60. (16) Taneda, M.; Shizu, K.; Tanaka, H.; Adachi, C. Chem. Commun. 2015, 51, 5028-5031.
  61. (17) Li, W.; Yan, L.; Zhou, H.; You, W. Chem. Mater. 2015, 27, 6470−6476.
  62. (18) Casey, A.; Dimitrov, S. D.; Shakya-Tuladhar, P.; Fei, Z.; Nguyen, M.; Han, Y.; Anthopoulos, T. D.; Durrant, J. R.; Heeney, M. Chem. Mater. 2016, 28, 14, 5110–5120.
  63. 3-4 參考文獻
  64. (1)Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 5, 1806–1815.
  65. (2)Nguyen, T. L.; Choi, H.; Ko, S.-J. M.; Uddin, A.; Walker, B.; Yum, S.; Jeong, J.-E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040-3051.
  66. (3)Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
  67. (4)Cha, H.; Kim, H. N.; An, T. K.; Kang, M. S.; Kwon, S. K.; Kim, Y. H.; Park, C. E. ACS Appl. Mater. Interfaces. 2014, 6, 18, 15774–15782.
  68. (5)Casey, A.; Green, J. P.; Tuladhar, P. S.; Kirkus, M.; Han, Y.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. A. 2017, 5, 6465-6470.
  69. (6)Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
  70. (7)Livi, F.; Zawacka, N. K.; Angmo, D.; Jørgensen, M.; Krebs, F. C.; Bundgaard, E. Macromolecules. 2015, 48, 11, 3481–3492.
  71. (8)Cohen, D. T.; Buchwald, S. L. Org Lett. 2015, 17, 2, 202–205.
  72. (9)Kularatne, R. S.; Taenzler, F. J.; Magurudeniya, H. D.; Du, J.; Murphy, J. W.; Sheina, E. E.; Gnade, B. E.; Biewer, M. C.; Stefan, M. C. J. Mater. Chem. A. 2013, 1, 15535-15543.
  73. (11http://chem.rutgers.edu/sites/default/files/coursefiles/courses_sp11/316/restricted/Notes-ResonanceandInductiveEffectsinAromaticCompounds.pdf
  74. (12)Halama, A.; Kaválek, J.; Macháček, V.; Weidlich, T. J. Chem. Soc., Perkin Trans. 1, 1999, 1839-1846.
  75. (13)Gallardo, I.; Guirado, G.; Marquet, J. J. Org. Chem. 2002, 67, 8, 2548–2555.
  76. (15)Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
  77. (16)Taneda, M.; Shizu, K.; Tanaka, H.; Adachi, C. Chem. Commun. 2015, 51, 5028-5031.
  78. (17)Li, W.; Yan, L.; Zhou, H.; You, W. Chem. Mater. 2015, 27, 6470−6476.
  79. (18)Casey, A.; Dimitrov, S. D.; Shakya-Tuladhar, P.; Fei, Z.; Nguyen, M.; Han, Y.; Anthopoulos, T. D.; Durrant, J. R.; Heeney, M. Chem. Mater. 2016, 28, 14, 5110–5120.