题名

合成血球凝集素辨認之醣分子與其衍生物作為抗流感病毒之材料

并列篇名

Synthesis of Hemagglutinin Binding Glycans and Their Conjugation for Anti-Influenza

DOI

10.6342/NTU.2012.2012.03415

作者

葉先偉

关键词

紅血球凝集素 ; 抗流感 ; 醣類 ; Hemagglutinin ; anti-influenza ; carbohydrate

期刊名称

國立臺灣大學藥學研究所學位論文

卷期/出版年月

2012年

学位类别

碩士

导师

梁碧惠

内容语文

英文

中文摘要

流感(Influenza)是一種高感染性的病毒,每年在全球造成約五百萬人感染以及約五十萬人死亡,其主要以H1N1及H3N2亞型流行於人類之間,流感病毒藉由表面的兩種醣蛋白 − 血球凝集素(HA)以及神經胺酸酶(NA),與人類宿主細胞上具特異性α2-6的末端唾液酸 (sialic acid)作用而達到流感病毒感染及散播的目的。然而,家禽流感則是辨認α2-3的末端唾液酸。前人的研究中,Neu5Ac-α(2-6)Gal-β(1-4)Glc認為是被人類流感病毒HA所辨認的醣分子,但近期的醣晶片以及蛋白質結晶研究顯示Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc和Neu5Ac-α(2-6)Gal-β(1-4)-6-SO3-GlcNAc這兩個醣分子對流感病毒HA具有更強的結合力。由於NA會迅速的切斷唾液酸與半乳糖之間的氧原子鍵結,我們希望利用硫原子取代氧原子以提升分子的穩定性。因此S-linked Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc將可用來與流感病毒上的HA辨識,我們合成了S-linked Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc(38, 20步, 總產率8%)和S-linked Neu5Ac-α(2-6)Gal-β(1-4)-6-SO3-GlcNAc(39, 21步, 總產率7%),並將這些合成的醣分子及單一個唾液酸分別接上DLPE形成DLPE鍵結分子45-47,並進一步使用此DLPE鍵結分子作成微脂粒(liposome)做為流感抑制劑。流感病毒抑制實驗結果顯示這些DLPE鍵結分子45-47對抑制流感的EC50約在70-180 μM之間。有趣的是,這些DLPE鍵結分子可以自行形成微胞(micelle),並以穿透式電子顯微鏡(TEM)檢驗證明,而這些微胞對流感病毒的抑制活性比形成liposome的組別來得更高。

英文摘要

Influenza, a highly pathogenic virus, accounts for about five million cases of severe illness, and about half-million deaths annually. Currently, the subtypes of H1N1 and H3N2 prevail over humans. The binding between the virus and the human host cell is dependent on the interaction of viral glycoprotein (HA and NA) with specific terminal Sia-α(2-6)Gal linkage glycans. In contrast, avian HA prefers to bind to host glycans with sia-α(2-3)Gal linkage. Previous research indicated that Neu5Ac-α(2-6)Gal-β(1-4)Glc was found to be the human HA binding glycan. Through the recent glycan arrays and protein co-crystal studies, two glycans − Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc and Neu5Ac-α(2-6)Gal-β(1-4)-6-SO3-GlcNAc have been identified to be the most important HA-binding glycans. As NA cleaves O-sialosides rapidly, we substituted the glycosidic oxygen atom by sulfur to enhance the stability of the glycosidic linkage. In fact, this strategy has been proved to inhibit the activity of glycosidases because S-glycosides show similar conformational space to O-glycosides. Owing to the metabolic stability, S-linked Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc should serve as a novel synthetic recognition molecule of HA. An efficient synthesis of S-Neu5Ac-α(2-6)Gal-β(1-4)GlcNAc (38, 20 steps, 8% overall yield) and S-Neu5Ac-α(2-6)Gal-β(1-4)-6-SO3-GlcNAc (39, 21 steps, 7% overall yield) were achieved. These molecules and mono sialic acid were further conjugated with DLPE to form DLPE conjugations 45-47 and also using these DLPE conjugations to form liposome, as competitors to block HA of influenza virus. The virus inhibitory assay showed that DLPE conjugations 45-47 have EC50 around 70-180 μM. Interestingly, these DLPE conjugations can form self-assembly micelles, which was confirmed by TEM and have higher anti-influenza activity comparing to their liposome forms.

主题分类 醫藥衛生 > 藥理醫學
醫學院 > 藥學研究所
参考文献
  1. 2. Taubenberger, J. K.; Morens, D. M., 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis. 2006, 12, 15-22.
    連結:
  2. 3. Scholtissek, C.; Rohde, W.; Von Hoyningen, V.; Rott, R., On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 1978, 87, 13-20.
    連結:
  3. 5. Taubenberger, J. K.; Reid, A. H.; Lourens, R. M.; Wang, R.; Jin, G.; Fanning, T. G., Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437, 889-93.
    連結:
  4. 6. Garten, R. J.; Davis, C. T.; Russell, C. A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W. M.; Xu, X.; Skepner, E.; Deyde, V.; Okomo-Adhiambo, M.; Gubareva, L.; Barnes, J.; Smith, C. B.; Emery, S. L.; Hillman, M. J.; Rivailler, P.; Smagala, J.; de Graaf, M.; Burke, D. F.; Fouchier, R. A.; Pappas, C.; Alpuche-Aranda, C. M.; Lopez-Gatell, H.; Olivera, H.; Lopez, I.; Myers, C. A.; Faix, D.; Blair, P. J.; Yu, C.; Keene, K. M.; Dotson, P. D., Jr.; Boxrud, D.; Sambol, A. R.; Abid, S. H.; St George, K.; Bannerman, T.; Moore, A. L.; Stringer, D. J.; Blevins, P.; Demmler-Harrison, G. J.; Ginsberg, M.; Kriner, P.; Waterman, S.; Smole, S.; Guevara, H. F.; Belongia, E. A.; Clark, P. A.; Beatrice, S. T.; Donis, R.; Katz, J.; Finelli, L.; Bridges, C. B.; Shaw, M.; Jernigan, D. B.; Uyeki, T. M.; Smith, D. J.; Klimov, A. I.; Cox, N. J., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325, 197-201.
    連結:
  5. 8. Potter, C. W., A history of influenza. J. Appl. Microbiol. 2001, 91, 572-579.
    連結:
  6. 9. Hilleman, M. R., Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 2002, 20, 3068-3087.
    連結:
  7. 10. Pinto, L. H.; Holsinger, L. J.; Lamb, R. A., Influenza virus M2 protein has ion channel activity. Cell 1992, 69, 517-28.
    連結:
  8. 11. Huang, Q.; Sivaramakrishna, R. P.; Ludwig, K.; Korte, T.; Bottcher, C.; Herrmann, A., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: Stability and energetics of the hemagglutinin. Biochim. Biophys Acta. 2003, 1614, 3-13.
    連結:
  9. 12. Boulo, S.; Akarsu, H.; Ruigrok, R. W.; Baudin, F., Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res. 2007, 124, 12-21.
    連結:
  10. 14. von Itzstein, M., The war against influenza: discovery and development of sialidase inhibitors. Nature Rev. Drug Discov. 2007, 6, 967-74.
    連結:
  11. 17. Couceiro, J. N.; Paulson, J. C.; Baum, L. G., Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 1993, 29, 155-65.
    連結:
  12. 18. Sriwilaijaroen, N.; Kondo, S.; Yagi, H.; Takemae, N.; Saito, T.; Hiramatsu, H.; Kato, K.; Suzuki, Y., N-glycans from porcine trachea and lung: Predominant NeuAcα2-6Gal could be a selective pressure for influenza variants in favor of human-type receptor. PLoS One 2011, 6, e16302.
    連結:
  13. 19. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A., Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006, 312, 404-10.
    連結:
  14. 20. Rogers, G. N.; Paulson, J. C.; Daniels, R. S.; Skehel, J. J.; Wilson, I. A.; Wiley, D. C., Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 1983, 304, 76-8.
    連結:
  15. 21. Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 2008, 26, 107-113.
    連結:
  16. 22. Childs, R. A.; Palma, A. S.; Wharton, S.; Matrosovich, T.; Liu, Y.; Chai, W.; Campanero-Rhodes, M. A.; Zhang, Y.; Eickmann, M.; Kiso, M.; Hay, A.; Matrosovich, M.; Feizi, T., Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 2009, 27, 797-9.
    連結:
  17. 23. Nycholat, C. M.; McBride, R.; Ekiert, D. C.; Xu, R.; Rangarajan, J.; Peng, W.; Razi, N.; Gilbert, M.; Wakarchuk, W.; Wilson, I. A.; Paulson, J. C., Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza a virus hemagglutinins. Angew Chem. Int. Ed. 2012, 51, 4860-4863.
    連結:
  18. 24. Stevens, J.; Blixt, O.; Paulson, J. C.; Wilson, I. A., Glycan microarray technologies: Tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol. 2006, 4, 857-64.
    連結:
  19. 25. Burmeister, W. P.; Henrissat, B.; Bosso, C.; Cusack, S.; Ruigrok, R. W., Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1993, 1, 19-26.
    連結:
  20. 26. Varghese, J. N.; McKimm-Breschkin, J. L.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M., The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 1992, 14, 327-32.
    連結:
  21. 27. Chong, A. K.; Pegg, M. S.; Taylor, N. R.; von Itzstein, M., Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus. Eur. J. Biochem. 1992, 207, 335-43.
    連結:
  22. 28. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M., LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127-34.
    連結:
  23. 29. Moscona, A., Neuraminidase Inhibitors for Influenza. N. Engl. J. Med. 2005, 353, 1363-1373.
    連結:
  24. 31. Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.; Pannu, N. S.; Read, R. J.; Bundle, D. R., Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000, 403, 669-72.
    連結:
  25. 32. Germain, R. N., Modern concepts in immune recognition and lymphocyte activation. Relevance for the development of useful vaccines. Int. J. Technol. Assess. 1994, 10, 81-92.
    連結:
  26. 33. Parera Pera, N.; Branderhorst, H. M.; Kooij, R.; Maierhofer, C.; van der Kaaden, M.; Liskamp, R. M. J.; Wittmann, V.; Ruijtenbeek, R.; Pieters, R. J., Rapid screening of lectins for multivalency effects with a glycodendrimer microarray. Chembiochem 2010, 11, 1896-1904.
    連結:
  27. 34. Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing receptor−ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933.
    連結:
  28. 36. Rao, J.; Yan, L.; Xu, B.; Whitesides, G. M., Using surface plasmon resonance to study the binding of vancomycin and its dimer to self-assembled monolayers presenting D-Ala-D-Ala. J. Am. Chem. Soc. 1999, 121, 2629-2630.
    連結:
  29. 39. Andre, S.; Ortega, P. J.; Perez, M. A.; Roy, R.; Gabius, H. J., Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology 1999, 9, 1253-61.
    連結:
  30. 40. Baek, M.-G.; Rittenhouse-Olson, K.; Roy, R., Synthesis and antibody binding properties of glycodendrimers bearing the tumor related T-antigen. ChemComm 2001, 3, 257-258.
    連結:
  31. 41. Zanini, D.; Roy, R., Synthesis of new α-thiosialodendrimers and their binding properties to the sialic acid specific lectin from limax flavus. J. Am. Chem. Soc. 1997, 119, 2088-2095.
    連結:
  32. 42. Dimick, S. M.; Powell, S. C.; McMahon, S. A.; Moothoo, D. N.; Naismith, J. H.; Toone, E. J., On the meaning of affinity:  Cluster glycoside effects and concanavalin A. J. Am. Chem. Soc. 1999, 121, 10286-10296.
    連結:
  33. 43. Kanai, M.; Mortell, K. H.; Kiessling, L. L., Varying the size of multivalent ligands:  The dependence of concanavalin a binding on neoglycopolymer length. J. Am. Chem. Soc. 1997, 119, 9931-9932.
    連結:
  34. 44. Hasegawa, T.; Kondoh, S.; Matsuura, K.; Kobayashi, K., Rigid helical poly(glycosyl phenyl isocyanide)s:  Synthesis, conformational analysis, and recognition by lectins. Macromolecules 1999, 32, 6595-6603.
    連結:
  35. 45. Sigal, G. B.; Mammen, M.; Dahmann, G.; Whitesides, G. M., Polyacrylamides bearing pendant α-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: The strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J. Am. Chem. Soc. 1996, 118, 3789-3800.
    連結:
  36. 46. DeFrees, S. A.; Phillips, L.; Guo, L.; Zalipsky, S., Sialyl lewis X liposomes as a multivalent ligand and inhibitor of E-selectin mediated cellular adhesion. J. Am. Chem. Soc. 1996, 118, 6101-6104.
    連結:
  37. 47. Yoshizumi, A.; Kanayama, N.; Maehara, Y.; Ide, M.; Kitano, H., Self-assembled monolayer of sugar-carrying polymer chain:  Sugar balls from 2-methacryloyloxyethyl D-glucopyranoside. Langmuir 1998, 15, 482-488.
    連結:
  38. 48. Hashimoto, Y.; Suzuki, M.; Crocker, P. R.; Suzuki, A., A streptavidin-based neoglycoprotein carrying more than 140 GT1b oligosaccharides: Quantitative estimation of the binding specificity of murine sialoadhesin expressed on CHO cells. J. Biochem. 1998, 123, 468-78.
    連結:
  39. 49. de Paz, J.-L.; Ojeda, R.; Barrientos, A. G.; Penades, S.; Martin-Lomas, M., Synthesis of a Ley neoglycoconjugate and Ley-functionalized gold glyconanoparticles. Tetrahed. Asym. 2005, 16, 149-158.
    連結:
  40. 50. de la Fuente, J. M.; Penades, S., Glyco-quantum dots: A new luminescent system with multivalent carbohydrate display. Tetrahed. Asym. 2005, 16, 387-391.
    連結:
  41. 51. Witczak, Z. J.; Sun, J.; Mielguj, R., Synthesis of L-fucopyranosyl-4-thiodisaccharides from levoglucosenone and their inhibitory activity on α-L-fucosidase. Bioorg. Med. Chem. Lett. 1995, 5, 2169-2174.
    連結:
  42. 52. Driguez, H., Thiooligosaccharides as tools for structural biology. Chembiochem 2001, 2, 311-318.
    連結:
  43. 53. Aguilera, B.; Jimenez-Barbero, J.; Fernandez-Mayoralas, A., Conformational differences between Fuc(α1–3)GlcNAc and its thioglycoside analogue. Carbohyd. Res. 1998, 308, 19-27.
    連結:
  44. 54. Liang, C. F.; Yan, M. C.; Chang, T. C.; Lin, C. C., Synthesis of S-linked alpha(2 -> 9) octasialic acid via exclusive alpha S-glycosidic bond formation. J. Am. Chem. Soc. 2009, 131, 3138-3139.
    連結:
  45. 55. Liakatos, A.; Kiefel, M. J.; Fleming, F.; Coulson, B.; von Itzstein, M., The synthesis and biological evaluation of lactose-based sialylmimetics as inhibitors of rotaviral infection. Bioorg. Med. Chem. 2006, 14, 739-757.
    連結:
  46. 56. Schou, C.; Rasmussen, G.; Schulein, M.; Henrissar, B.; Driguez, H., 4-Thiocellooligosaccharides : Their synthesis and use as inhibitors of cellulases. J. Carbohydr. Chem. 1993, 12, 743-752.
    連結:
  47. 57. Sulzenbacher, G.; Driguez, H.; Henrissat, B.; Schulein, M.; Davies, G. J., Structure of the fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue:  Substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 1996, 35, 15280-15287.
    連結:
  48. 58. Sakamoto, J.; Koyama, T.; Miyamoto, D.; Yingsakmongkon, S.; Hidari, K. I.; Jampangern, W.; Suzuki, T.; Suzuki, Y.; Esumi, Y.; Hatano, K.; Terunuma, D.; Matsuoka, K., Thiosialoside clusters using carbosilane dendrimer core scaffolds as a new class of influenza neuraminidase inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 717-21.
    連結:
  49. 59. Kale, R. R.; Mukundan, H.; Price, D. N.; Harris, J. F.; Lewallen, D. M.; Swanson, B. I.; Schmidt, J. G.; Lyer, S. S., Detection of intact influenza viruses using biotinylated biantennary S-sialosides. J. Am. Chem. Soc. 2008, 130, 8169-8171.
    連結:
  50. 60. Liao, H.-Y.; Hsu, C.-H.; Wang, S.-C.; Liang, C.-H.; Yen, H.-Y.; Su, C.-Y.; Chen, C.-H.; Jan, J.-T.; Ren, C.-T.; Chen, C.-H.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H., Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. J. Am. Chem. Soc. 2010, 132, 14849-14856.
    連結:
  51. 61. Hasegawa, A.; Nakamura, J.; Kiso, M., Studies on the thioglycosides of N-acetylneuraminic acid 1: Synthesis of alkyl α-glycosides of 2-thio-N-acetylneuraminic acid. J. Carbohydr. Chem. 1986, 5, 11-19.
    連結:
  52. 62. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H., Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 1999, 121, 734-753.
    連結:
  53. 63. Corey, E. J.; Venkateswarlu, A., Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc. 1972, 94, 6190-6191.
    連結:
  54. 64. Crich, D.; Smith, M., 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: A potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc. 2001, 123, 9015-9020.
    連結:
  55. 65. Zhu, X.; Schmidt, R. R., Selective conversion of N-trichloroethoxycarbonyl (Troc) groups into N-acetyl groups in the presence of N-tert-butoxycarbonyl (Boc) protecting groups. Synthesis 2003, 1262–1266.
    連結:
  56. 66. Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K., Solvent-modulated Pd/C-catalyzed deprotection of silyl ethers and chemoselective hydrogenation. Tetrahedron 2004, 60, 6901-6911.
    連結:
  57. 67. Rich, J. R.; Bundle, D. R., S-linked ganglioside analogues for use in conjugate vaccines. Org. Lett. 2004, 6, 897-900.
    連結:
  58. 69. Mammen, M.; Dahmann, G.; Whitesides, G. M., Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. insight into mechanism of inhibition. J. Med. Chem. 1995, 38, 4179-4190.
    連結:
  59. 70. Rosenthal, A. L.; Saifer, A., Continuous UV monitoring of fluorogenic substrates: I. Kinetic analysis of N-acetyl-β-d-hexosaminidases. Anal. Biochem. 1973, 55, 85-92.
    連結:
  60. 71. Bakshi, M. S.; Singh, J.; Kaur, G., Fluorescence study of solubilization of l-α-dilauroylphosphatidylethanolamine in the mixed micelles with monomeric and dimeric cationic surfactants. J. Photochem. Photobiol. A-Chem. 2005, 173, 202-210.
    連結:
  61. 72. Lehmann, F.; Tiralongo, E.; Tiralongo, J., Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 2006, 63, 1331-1354.
    連結:
  62. 73. Varki, A., Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007, 446, 1023-1029.
    連結:
  63. 74. Jin, L.; McLean, P. A.; Neel, B. G.; Wortis, H. H., Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 2002, 195, 1199–1205.
    連結:
  64. 75. Pastan, I.; Hassan, R.; FitzGerald D. J.; Kreitman, R. J., Immunotoxin therapy of cancer. Nat. Rev. Cancer. 2006, 6, 559-565.
    連結:
  65. 1. (a) Salomon, R.; Webster, R. G., The influenza virus enigma. Cell 2009, 136, 402-10. (b) Tong, S.; Li, Y.; Rivailler, P.; Conrardy, C.; Castillo, D. A.; Chen, L. M.; Recuenco, S.; Ellison, J. A.; Davis, C. T.; York, I.A.; Turmelle, A. S.; Moran, D.; Rogers, S.; Shi, M.; Tao, Y.; Weil, M. R.; Tang, K.; Rowe, L. A.; Sammons, S.; Xu, X.; Frace, M.; Lindblade, K. A.; Cox, N. J.; Anderson, L. J.; Rupprecht, C. E.; Donis, R. O. Proc. Natl. Acad. Sci. USA 2012, 109, 4269-74
  66. 4. Hay, A. J.; Gregory, V.; Douglas, A. R.; Lin, Y. P., The evolution of human influenza viruses. Phil. Trans. R. Soc. B 2001, 356, 1861-70.
  67. 7. Smith, G. J.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S.; Peiris, J. S.; Guan, Y.; Rambaut, A., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122-5.
  68. 13. Shapiro, G. I.; Gurney, T., Jr.; Krug, R. M., Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J. Virol. 1987, 61, 764-73.
  69. 15. Gamblin, S. J.; Haire, L. F.; Russell, R. J.; Stevens, D. J.; Xiao, B.; Ha, Y.; Vasisht, N.; Steinhauer, D. A.; Daniels, R. S.; Elliot, A.; Wiley, D. C.; Skehel, J. J., The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 2004, 303, 1838-1842.
  70. 16. Ito, T.; Couceiro, J. N.; Kelm, S.; Baum, L. G.; Krauss, S.; Castrucci, M. R.; Donatelli, I.; Kida, H.; Paulson, J. C.; Webster, R. G.; Kawaoka, Y., Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998, 72, 7367-73.
  71. 30. Dharan, N. J.; Gubareva, L. V.; Meyer, J. J.; Okomo-Adhiambo, M.; McClinton, R. C.; Marshall, S. A.; St George, K.; Epperson, S.; Brammer, L.; Klimov, A. I.; Bresee, J. S.; Fry, A. M., Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. J. Am. Med. Assoc. 2009, 301, 1034-41.
  72. 35. Lindhorst, T. K.; Kieburg, C.; Krallmann-Wenzel, U., Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alpha-mannosyl clusters: the effect of multivalency. Glycoconj J. 1998, 15, 605-13.
  73. 37. Roy, R.; Page, D.; Perez, S. F.; Bencomo, V. V., Effect of shape, size, and valency of multivalent mannosides on their binding properties to phytohemagglutinins. Glycoconj J. 1998, 15, 251-63.
  74. 38. Thompson, J. P.; Schengrund, C. L., Oligosaccharide-derivatized dendrimers: defined multivalent inhibitors of the adherence of the cholera toxin B subunit and the heat labile enterotoxin of E. coli to GM1. Glycoconj J. 1997, 14, 837-45.
  75. 68. Rowe, T.; Abernathy, R. A.; Hu-Primmer, J.; Thompson, W. W.; Lu, X.; Lim, W.; Fukuda, K.; Cox, N. J.; Katz, J. M., Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 1999, 37, 937-43.