参考文献
|
-
[1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for
連結:
-
a special wave speed, Bull. Math. Biol., 41 (1979), pp. 835–840.
連結:
-
[2] G. A. Afrouzi, On a nonlinear eigenvalue problem in ODE, J. Math. Anal. Appl.,
連結:
-
303 (2005), pp. 342–349.
連結:
-
[3] S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to
連結:
-
a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), pp. 893–
連結:
-
[4] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,
連結:
-
combustion, and nerve pulse propagation, in Partial differential equations and
連結:
-
solutions of three species competition-diffusion systems, preprint.
連結:
-
(2011), pp. 1238 – 1251.
連結:
-
[9] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for
連結:
-
a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003),
連結:
-
[10] P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations
連結:
-
[11] P. C. Fife, Mathematical aspects of reacting and diffusing systems, vol. 28 of Lecture
連結:
-
Notes in Biomathematics, Springer-Verlag, Berlin, 1979.
連結:
-
[12] R. A. Fisher, The wave of advance of an advantageous gene, Ann. Eugen, 7 (1936),
連結:
-
[13] X. Hou and A. W. Leung, Traveling wave solutions for a competitive reactiondiffusion
連結:
-
system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008),
連結:
-
[14] L.-C. Hung, Traveling wave solutions of competitive-cooperative lotka-volterra systems
連結:
-
of three species, Nonlinear Analysis: Real World Applications, 12 (2011),
連結:
-
[15] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for
連結:
-
[16] , Existence of standing waves for competition-diffusion equations, Japan J. Indust.
連結:
-
Appl. Math., 13 (1996), pp. 117–133.
連結:
-
[17] , Fisher wave fronts for the Lotka-Volterra competition model with diffusion,
連結:
-
Nonlinear Anal., 28 (1997), pp. 145–164.
連結:
-
[18] , Travelling waves for a Lotka-Volterra competition model with diffusion [translation
連結:
-
[19] J. I. Kanel, On the wave front solution of a competition-diffusion system in population
連結:
-
dynamics, Nonlinear Anal., 65 (2006), pp. 301–320.
連結:
-
[21] , Existence of wave front solutions and estimates of wave speed for a competitiondiffusion
連結:
-
system, Nonlinear Anal., 27 (1996), pp. 579–587.
連結:
-
[22] P. Koch Medina and G. Schatti, Long-time behaviour for reaction-diffusion
連結:
-
equation with growth of the quantity of matter and its application to a biological
連結:
-
[24] A. W. Leung, Nonlinear Systems of Partial Differential Equations, Applications to
連結:
-
London, 2009.
連結:
-
[25] A. W. Leung, X. Hou, and W. Feng, Traveling wave solutions for Lotka-
連結:
-
[26] , Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Contin.
連結:
-
[28] S. Merino, A note on the existence of travelling waves for the Fisher-Kolmogorov
連結:
-
[29] J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer-Verlag,
連結:
-
Berlin, second ed., 1993.
連結:
-
[31] M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and
連結:
-
[32] M. Tang and P. Fife, Propagating fronts for competing species equations with
連結:
-
of parabolic systems, vol. 140 of Translations of Mathematical Monographs,
連結:
-
American Mathematical Society, Providence, RI, 1994. Translated from the Russian
連結:
-
[34] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,
連結:
-
J. Dynam. Differential Equations, 13 (2001), pp. 651–687.
連結:
-
[35] , Erratum to: “Traveling wave fronts of reaction-diffusion systems with delay”
連結:
-
Differential Equations, 20 (2008), pp. 531–533.
連結:
-
[36] L. Zhou and Y. I. Kanel, A new proof of existence of the wave front solutions
連結:
-
901.
-
related topics (Program, Tulane Univ., New Orleans, La., 1974), Springer, Berlin,
-
1975, pp. 5–49. Lecture Notes in Math., Vol. 446.
-
[5] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama, Exact traveling wave
-
[6] , Traveling waves with two humps in a competitive lotka-volterra system of three
-
species, preprint.
-
[7] R. Cherniha and V. Davydovych, Conditional symmetries and exact solutions
-
of the diffusive lotka-volterra system, Mathematical and Computer Modelling, 54
-
[8] P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute
-
of Math., Polish Academy Sci., Zam, 190 (1979), pp. 11–79.
-
pp. 503–524.
-
to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1977),
-
pp. 335–361.
-
pp. 355–369.
-
pp. 2196–2213.
-
pp. 3691 – 3700.
-
competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), pp. 340–363.
-
of S‾ugaku 49 (1997), no. 4, 379–392; MR1614330 (2000b:92020)], Sugaku
-
Expositions, 13 (2000), pp. 39–53. Sugaku Expositions.
-
[20] J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave
-
speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), pp. 579–587.
-
equations on RN, Nonlinear Anal., 25 (1995), pp. 831–870.
-
[23] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Study of the diffusion
-
problem.(French) Moscow Univ, Bull. Math, 1 (1937), pp. 1–25.
-
Life and Physical Sciences, World Scientific Publishing Co., New Jersey, Singapore,
-
Volterra system re-visited, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), pp. 171–
-
196.
-
Dyn. Syst. Ser. B, 15 (2011), pp. 171–196.
-
[27] A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive
-
reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008),
-
pp. 902–924.
-
equation via the method of sub- and supersolutions, in International Conference
-
on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998,
-
pp. 448–452.
-
[30] M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,
-
Hiroshima Math. J., 30 (2000), pp. 257–270.
-
nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), pp. 657–696.
-
diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), pp. 69–77.
-
[33] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling wave solutions
-
manuscript by James F. Heyda.
-
[J. Dynam. Differential Equations 13 (2001), no. 3, 651–687; mr1845097], J. Dynam.
-
for a kind of reaction-diffusion system, in Nonlinear evolutionary partial differential
-
equations (Beijing, 1993), vol. 3 of AMS/IP Stud. Adv. Math., Amer. Math. Soc.,
-
Providence, RI, 1997, pp. 469–481.
|