题名

論洛特卡-佛爾特拉方程組之解

并列篇名

On Solutions of Diffusive Lotka-Volterra Systems

DOI

10.6342/NTU.2011.00471

作者

洪立昌

关键词

行進波解 ; 嚴密解 ; 洛特卡-佛爾特拉 ; Traveling wave solutions ; Exact solutions ; Lotka-Volterra

期刊名称

國立臺灣大學數學系學位論文

卷期/出版年月

2011年

学位类别

博士

导师

陳俊全

内容语文

英文

中文摘要

本作品討論二物種與三物種擴散型洛特卡-佛爾特拉方程組。對二競爭物種組,雙曲函數法用來構建嚴密行進波解。在藤田型結果的基礎之上,發展共存位移法來找二合作物種組的爆破解(和廖嫻)。對競爭-合作混合型三物種組,我們用上下解法來構築行進波解的存在性。以廣義雙曲函數法,可以證明三競爭物種組有嚴密(和三村昌泰等人)和半嚴密行進波解(和裘愉生)。此外,藉由極大值原理,三競爭物種組的行進波解不存在性也可以建立。最終,我們證明由熱傳方程的解可以構造出三競爭物種擴散型組的解。更進一步工作包含如何研究由擴散項引發的長期共存,這是從熱傳方程的解構築出來之解所發現的有趣新現象。

英文摘要

In the present work, we study diffusive Lotka-Volterra systems of two-species and three-species. For competitive systems of two species, the tanh method is applied to construct exact traveling wave solutions. Based on the Fujita-type results, the method of shifted coexistence is developed to find blow-up solutions of cooperative systems of two species (with Xian Liao). For competitive-cooperative and competitive systems of three species, we employ the method of super- and subsolutions to establish the existence of traveling wave solutions. By using the generalized tanh method, it is shown that exact (with M. Mimura et al.) and semi-exact (with Yu-Sheng Chiou) traveling wave solutions exist for competitive systems of three species. In addition, nonexistence of traveling wave solutions to competitive systems of three species is also established by the maximum principle. Finally, we show solutions to competitive systems of three species can be constructed from the solutions of the heat equation. Further investigations include how to study diffusion-enhanced long-term coexistence, which is an interesting new phenomenon discovered by means of the solutions constructed from the heat equation.

主题分类 基礎與應用科學 > 數學
理學院 > 數學系
参考文献
  1. [1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for
    連結:
  2. a special wave speed, Bull. Math. Biol., 41 (1979), pp. 835–840.
    連結:
  3. [2] G. A. Afrouzi, On a nonlinear eigenvalue problem in ODE, J. Math. Anal. Appl.,
    連結:
  4. 303 (2005), pp. 342–349.
    連結:
  5. [3] S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to
    連結:
  6. a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), pp. 893–
    連結:
  7. [4] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,
    連結:
  8. combustion, and nerve pulse propagation, in Partial differential equations and
    連結:
  9. solutions of three species competition-diffusion systems, preprint.
    連結:
  10. (2011), pp. 1238 – 1251.
    連結:
  11. [9] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for
    連結:
  12. a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003),
    連結:
  13. [10] P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations
    連結:
  14. [11] P. C. Fife, Mathematical aspects of reacting and diffusing systems, vol. 28 of Lecture
    連結:
  15. Notes in Biomathematics, Springer-Verlag, Berlin, 1979.
    連結:
  16. [12] R. A. Fisher, The wave of advance of an advantageous gene, Ann. Eugen, 7 (1936),
    連結:
  17. [13] X. Hou and A. W. Leung, Traveling wave solutions for a competitive reactiondiffusion
    連結:
  18. system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008),
    連結:
  19. [14] L.-C. Hung, Traveling wave solutions of competitive-cooperative lotka-volterra systems
    連結:
  20. of three species, Nonlinear Analysis: Real World Applications, 12 (2011),
    連結:
  21. [15] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for
    連結:
  22. [16] , Existence of standing waves for competition-diffusion equations, Japan J. Indust.
    連結:
  23. Appl. Math., 13 (1996), pp. 117–133.
    連結:
  24. [17] , Fisher wave fronts for the Lotka-Volterra competition model with diffusion,
    連結:
  25. Nonlinear Anal., 28 (1997), pp. 145–164.
    連結:
  26. [18] , Travelling waves for a Lotka-Volterra competition model with diffusion [translation
    連結:
  27. [19] J. I. Kanel, On the wave front solution of a competition-diffusion system in population
    連結:
  28. dynamics, Nonlinear Anal., 65 (2006), pp. 301–320.
    連結:
  29. [21] , Existence of wave front solutions and estimates of wave speed for a competitiondiffusion
    連結:
  30. system, Nonlinear Anal., 27 (1996), pp. 579–587.
    連結:
  31. [22] P. Koch Medina and G. Schatti, Long-time behaviour for reaction-diffusion
    連結:
  32. equation with growth of the quantity of matter and its application to a biological
    連結:
  33. [24] A. W. Leung, Nonlinear Systems of Partial Differential Equations, Applications to
    連結:
  34. London, 2009.
    連結:
  35. [25] A. W. Leung, X. Hou, and W. Feng, Traveling wave solutions for Lotka-
    連結:
  36. [26] , Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Contin.
    連結:
  37. [28] S. Merino, A note on the existence of travelling waves for the Fisher-Kolmogorov
    連結:
  38. [29] J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer-Verlag,
    連結:
  39. Berlin, second ed., 1993.
    連結:
  40. [31] M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and
    連結:
  41. [32] M. Tang and P. Fife, Propagating fronts for competing species equations with
    連結:
  42. of parabolic systems, vol. 140 of Translations of Mathematical Monographs,
    連結:
  43. American Mathematical Society, Providence, RI, 1994. Translated from the Russian
    連結:
  44. [34] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,
    連結:
  45. J. Dynam. Differential Equations, 13 (2001), pp. 651–687.
    連結:
  46. [35] , Erratum to: “Traveling wave fronts of reaction-diffusion systems with delay”
    連結:
  47. Differential Equations, 20 (2008), pp. 531–533.
    連結:
  48. [36] L. Zhou and Y. I. Kanel, A new proof of existence of the wave front solutions
    連結:
  49. 901.
  50. related topics (Program, Tulane Univ., New Orleans, La., 1974), Springer, Berlin,
  51. 1975, pp. 5–49. Lecture Notes in Math., Vol. 446.
  52. [5] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama, Exact traveling wave
  53. [6] , Traveling waves with two humps in a competitive lotka-volterra system of three
  54. species, preprint.
  55. [7] R. Cherniha and V. Davydovych, Conditional symmetries and exact solutions
  56. of the diffusive lotka-volterra system, Mathematical and Computer Modelling, 54
  57. [8] P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute
  58. of Math., Polish Academy Sci., Zam, 190 (1979), pp. 11–79.
  59. pp. 503–524.
  60. to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1977),
  61. pp. 335–361.
  62. pp. 355–369.
  63. pp. 2196–2213.
  64. pp. 3691 – 3700.
  65. competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), pp. 340–363.
  66. of S‾ugaku 49 (1997), no. 4, 379–392; MR1614330 (2000b:92020)], Sugaku
  67. Expositions, 13 (2000), pp. 39–53. Sugaku Expositions.
  68. [20] J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave
  69. speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), pp. 579–587.
  70. equations on RN, Nonlinear Anal., 25 (1995), pp. 831–870.
  71. [23] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Study of the diffusion
  72. problem.(French) Moscow Univ, Bull. Math, 1 (1937), pp. 1–25.
  73. Life and Physical Sciences, World Scientific Publishing Co., New Jersey, Singapore,
  74. Volterra system re-visited, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), pp. 171–
  75. 196.
  76. Dyn. Syst. Ser. B, 15 (2011), pp. 171–196.
  77. [27] A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive
  78. reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008),
  79. pp. 902–924.
  80. equation via the method of sub- and supersolutions, in International Conference
  81. on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998,
  82. pp. 448–452.
  83. [30] M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,
  84. Hiroshima Math. J., 30 (2000), pp. 257–270.
  85. nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), pp. 657–696.
  86. diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), pp. 69–77.
  87. [33] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling wave solutions
  88. manuscript by James F. Heyda.
  89. [J. Dynam. Differential Equations 13 (2001), no. 3, 651–687; mr1845097], J. Dynam.
  90. for a kind of reaction-diffusion system, in Nonlinear evolutionary partial differential
  91. equations (Beijing, 1993), vol. 3 of AMS/IP Stud. Adv. Math., Amer. Math. Soc.,
  92. Providence, RI, 1997, pp. 469–481.