题名

台灣地區低致病性禽流感H5亞型病毒及2009年流行之H1N1病毒在肉豬及禽畜業工作人員的血清偵測

并列篇名

Serological Surveillance on 2009 Pandemic Influenza H1N1 Viruses and LPAI H5 among Swine and Animal-related Workers in Taiwan

DOI

10.6342/NTU.2011.00484

作者

蔡孟玲

关键词

流行性感冒 ; 血清學偵測 ; 2009年新型流感 ; 低致病性H5亞型禽流感 ; 豬 ; 動物相關產業人員 ; 牧場 ; 跨種傳播 ; 人畜共通傳染病 ; 全球流行 ; 台灣 ; influenza virus ; serological surveillance ; pH1N1/09 ; LPAI H5 ; swine ; animal-related people ; farm ; inter-species transmission ; zoonosis ; pandemic ; Taiwan

期刊名称

國立臺灣大學流行病學與預防醫學研究所學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

金傳春

内容语文

英文

中文摘要

流行性感冒(簡稱流感)病毒具八段基因,且極易發生抗原漂變(drift)、移變(shift)及基因重組,因此常在動物或人群間變異傳播、適應而造成大規模流行。臺灣家禽曾出現「低」致病性禽流感H5亞型(簡稱LPAI H5)的流行,在2003年造成農業經濟損失甚鉅。而2009年美洲冒出禽、人、豬三重組的新型流感H1N1病毒(簡稱pH1N1/09),即在豬群上經重組後,迅速適應而傳播至人,終造成人際間全球大流行。由於豬呼吸道細胞可同時感染來自禽及人兩宿主的流感病毒,致使豬可成為流感病毒基因重組與種間傳播的媒介。本研究目的以血清學監測臺灣肉豬及禽畜業相關人員對2009年新型H1N1病毒及本土低致病性H5禽流感病毒的感染,期能了解流感病毒可能跨越兩宿主族群傳播的關係與感染的危險/保護因子。 內容含三部分:(一) 2008到2010年間,在A縣牧場內收集846支經濟用豬血清,進行LPAI H5及pH1N1/09的血清抗體監測;(二)2010年收集同縣1,354名禽畜業人員血清也進行此兩流感病毒的抗體監測;及(三)找出人與豬感染之危險及保護因子。作法上,禽流感病毒的血球凝集抑制(hemagglutination inhibition, HI)抗體測試是採自2008年A縣活禽市場分離得的LPAI H5病毒,並測血清對馬紅血球凝集抑制力(抗體效價≧1:20為陽性);pH1N1/09的HI抗體是採自備製新流感疫苗的2009年A/California/7/2009 (H1N1)病毒株,以其對火雞紅血球凝集抑制力(抗體效價≧1:40為陽性)。 結果發現,自2008年8月到2010年5月間,豬隻的此新流感H1N1病毒抗體總盛行率為19.1% (162/846) [三年各為8.9% (20/225)、2009年8月3.4% (10/291)及40.0% (132/330) ];而豬場的此病毒抗體總盛行率為51.7% (31/60)[各為53.3% (8/15)、22.7% (5/22)及78.3% (18/23)];均遠高出該豬群/豬場的本土低致病性H5抗體總盛行率(p<0.0001),且僅一隻來自2008年的豬為低致病性H5抗體陽性(0.12%,1/846)。多變項分析控制年度變項後,發現此三年豬飼養於沿海區為其感染此新流感H1N1病毒的危險因子 [勝算比(Odds Ratio, OR)=2.33,95% 信賴區間(confidence interval, CI)=1.51-3.59,p=0.0001],而良好的飼養管理為保護因子(OR=0.99,95% CI=0.98-0.995,p=0.0006)。以多變項分析單2010年檢測結果後,發現另有非一貫式飼養也是危險因子(OR=2.88,95% CI=1.45-5.72,p=0.0025),其餘結果雷同(養於沿海:OR=3.43,95% CI=1.71-6.88,p=0.0005;管理好:OR=0.96 ,95% CI=0.95-0.97,p<0.0001)。 2010年10月動物相關產業人員的此新H1N1流感病毒抗體總盛行率為21.42% (290/1,354),而未打新流感疫苗的之此病毒抗體陽性率為16.4% (138/841),均高於其低致病性H5抗體陽性率1.77% (24/1,354) (p<0.0001)。以多變項分析控制年齡及打pH1N1/09疫苗兩變項後,發現豬相關工作者的pH1N1/09抗體陽性風險較其他人員為高(OR=1.50,95% CI=1.11-2.02,p=0.0084),而牧場場主(OR=0.071,95% CI=0.50-0.99,p=0.042)、屠夫或營業員(OR=0.32,95% CI=0.14-0.73,p=0.0061)為保護因子;在未打新流感疫苗者控制年齡後,牧場員工(OR=1.62,95% CI= 1.06- 2.47,p=0.0257)及獸醫師(OR=4.72,95% CI=1.51-14.83,p=0.0078)較易感染;相反地,較高的身體質量指數(Body Mass Index,BMI) (OR=0.91,95% CI= 0.86- 0.97,p=0.003)及從事禽工作(OR=0.64,95% CI=0.43-0.96,p=0.0299)較不易感染。另控制年齡後,人感染低致病性H5流感的危險因子為從事禽業(OR= 3.40,95% CI=1.21-9.56,p=0.0205),而保護因子為居住在豬舍密度較高(≧1.58 pig house/km2)區(OR=0.28,95% CI=0.11-0.76,p=0.0121)。 本研究的結論是2009年新流感病毒較禽流感H5病毒極易在臺灣中部跨越感染人及豬群,因外來新流感H1N1大流行後期的臺灣豬群抗體盛行率明顯高於2009年第一波流行及2008年的背景值;反之,臺灣禽的本土低致病性H5禽流感病毒較少在豬群間感染。有鑑於豬為流感病毒跨宿主傳播與基因重組的重要橋樑,未來更應加強豬及相關產業人員的流感病毒及血清偵測,且將同牧場的豬群及人群配對比較,迅速掌握流感病毒在臺灣禽畜業的動向;並探究新流感病毒是否較動物流感病毒有取代優勢力及其機轉。

英文摘要

Influenza A viruses (IAVs) involving eight gene segments can infect many different hosts and are capable to have inter-species transmission among mammals, avian and humans. These viruses have changed continuously year by year and are also capable to emerge novel virus after antigenic shift occasionally. Pigs having receptors for both avian and mammalian influenza viruses are susceptible to infection of these viruses, and thus may serve as a mediator of inter-species transmission of IAVs between human and avian populations. In Taiwan, a large-scale outbreak of low pathogenic avian influenza (LPAI) H5 viruses occurred in 2003 causing great economic loss. Furthermore, the 2009 emerged triple-reassorted pandemic H1N1 viruses (pH1N1/09) with swine- and avian-origin gene segments rapidly spread human-to-human populations leading to pandemics. Therefore, the specific aims of this study were to investigate possible inter-species transmission of LPAI H5 and the pH1N1/09 viruses among economic swine and animal-related workers in Taiwan through serological surveillance and to search for the risk and protective factors for the infections of these two animal-origin influenza viruses. To approach above issues, this study involved three parts: (1) to conduct a serological surveillance of the pH1N1/09 and LPAI H5 influenza in 846 pigs in County A of central Taiwan from August 2008 to May 2010 (2) to find out the likelihood in acquiring the two viral infections among 1,354 animal-related workers in County A in 2010 by measuring their antibody serotiters; and (3) to investigate factors associated with the two viral infections in these two different host populations, particularly environmental conditions that may reflect local geographical differences in seroprevalence rates of pH1N1/09. To investigate the epidemiological importance of inter-species transmission in central Taiwan, both 846 swine serum samples (60 farms) from 2008 to 2010, and 1354 human sera from animal-related workers in 2010 were collected in County A. These samples were screened by modified hemagglutinin inhibition (HI) assays using turkey RBCs and the California/7/2009 (H1N1) vaccine strain for measuring anti- pH1N1/09 HI antibody, and the titers >1:40 regarded as seropositive. On the other hand, horse red blood cells (RBCs) and the locally Taiwanese low pathogenic avian influenza (LPAI) H5N2 viruses (Duck/Taiwan/DV1237/2008, isolated from ducks in County A) were used to measure anti-H5 HI antibody, and serotitiers >1:20 determined as seropositive. Risk and protective factors for acquiring both infections in swine and animal-related human populations were further analyzed by univariate and multivariate analyses. The overall seroprevalence rates of anti-pH1N1/09 in swine populations and swine farms were 19.1% (162/846) and 51.7% (31/60), respectively; with significant increase in 2010 [40.0% (132/330 samples); 78.3% (18/23 farms)] compared to those in 2008 [8.9% (20/225 samples); 53.3%, (8/15 farms)] and in 2009 [3.4%, (10/291 samples); 22.7%, (5/22 farms)] (p<0.0001). These overall seroprevalence rates of the 2009 novel influenza virus in swine were significantly higher than those of LPAI H5 [0.12% (1/846 samples); 1.7% (1/60 farms), (p<0.0001)]. Similar trends in significant differences between these two animal-originated viruses also occurred for pH1N1/09 infection in animal-related workers [21.4% (290/1,354) in all workers and 16.4% (138/841) in non-pH1N1/09 vaccinated workers on pH1N1/09 infection, versus 1.8% (24/1,354) on LPAI H5, p<0.0001]. Multivariate analysis after controlling the study year shows that the risk factor for swine to acquire the pH1N1/09 infection during the past three years was raised swine along the coast [Odds Ratio (OR)=2.33, 95% confidence interval (CI)=1.51 -3.59, p=0.0001], whereas the protective factor was appropriate swine farm management (OR=0.99, 95% CI=0.98-0.995, p=0.0006). The risk and protective factors in the 2010’s pH1N1/09 infection in swine remained the same [raised along the coast (OR=3.43, 95% CI=1.71-6.88, p=0.0005) and well management (OR=0.96, 95% CI=0.95-0.97, p<0.0001)], in addition to another risk factor of the farrow-to-finish raised farm type (OR=2.88, 95% CI=1.45-5.72, p=0.0025). Regarding to human infection, after controlling age and receiving the pH1N1/09 vaccine, the multivariate analysis reveal that the only statistically significant risk factor for acquiring the 2009 pH1N1 infection among animal-related workers was swine-related labor (OR=1.50, 95% CI=1.11-2.02, p=0.0084), whereas the protective factors were the low-risk occupations [farm’s owners (OR=0.071, 95% CI=0.50-0.99, p=0.042) and slaughters or sellers (OR=0.32, 95% CI=0.14 -0.73, p=0.0061)]. Among those pH1N1/09-unvaccinated workers, the high-risk occupations increased the risk of acquiring this infection [swine farm’s employees (OR=1.62, 95% CI=1.06-2.47, p=0.0257) and veterinarians (OR=4.72, 95% CI=1.51-14.83, p=0.0078)] in contrast, avian-related labors (OR=0.64, 95% CI=0.43-0.96, p=0.0299) and higher body mass index (BMI) (OR=0.91, 95% CI=0.86-0.97, p=0.003) were protective factors. On the other hand, the only risk factor for acquiring the LPAI H5 infection among animal-related workers after controlling age was avian-related labors (OR=3.40, 95% CI=1.21-9.56, p=0.0205), whereas the only protective factor was living in areas with higher densities of pig houses (OR=0.28, 95% CI=0.11-0.76, p=0.0121). In conclusion, swine populations did strikingly increase the infection of pH1N1/09 in central Taiwan in 2010 after the occurrence of the 2009 pandemic in human in 2009. On the contrary, LPAI H5 virus isolated in County A that had not been adapted to swine populations yet leading that the seroprevalenc of this H5 virus infection was extremely low in animal-related workers. This first seroepidemiological study in both swine and swine workers in the same county can provide us more clues on inter-species transmission of important novel influenza viruses in this island where poultry density ranked the highest. Since Taiwan has been the HPAI-free area domestically and has not had outbreaks of novel influenza among human or swine populations, virological and serological surveillance to detect novel influenza viruses in farms and high risk populations with animal exposures in the countryside should be reinforced continuously. In addition, future research needs to focus on serological surveillance of influenza viruses among paired animal-related workers and their farm animals and investigating the mechanism involved in novel influenza viruses to become selection advantageous viruses for replacing the localized animal influenza viruses.

主题分类 醫藥衛生 > 預防保健與衛生學
公共衛生學院 > 流行病學與預防醫學研究所
参考文献
  1. 1. Shortridge KF. Pandemic influenza: a zoonosis? Semin Respir Infect 1992;7(1):11-25.
    連結:
  2. 2. Suarez DL, Garcia M, Latimer J, Senne D, Perdue M. Phylogenetic analysis of H7 avian influenza viruses isolated from the live bird markets of the Northeast United States. J Virol 1999;73(5):3567-73.
    連結:
  3. 3. Bridges CB, Lim W, Hu-Primmer J, Sims L, Fukuda K, Mak KH, et al. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998. J Infect Dis 2002;185(8):1005-10.
    連結:
  4. 4. Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim W, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol 1999;37(4):937-43.
    連結:
  5. 5. Olsen CW, Carey S, Hinshaw L, Karasin AI. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States. Arch Virol 2000;145(7):1399-419.
    連結:
  6. 6. Olsen CW, Brammer L, Easterday BC, Arden N, Belay E, Baker I, et al. Serologic evidence of H1 swine Influenza virus infection in swine farm residents and employees. Emerg Infect Dis 2002;8(8):814-9.
    連結:
  7. 7. Chan PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis 2002;34 Suppl 2:S58-64.
    連結:
  8. 8. Xu X, Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 1999;261(1):15-9.
    連結:
  9. 9. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;360(25):2605-15.
    連結:
  10. 10. Scholtissek C. Source for influenza pandemics. Eur J Epidemiol 1994;10(4):455-8.
    連結:
  11. 11. Schafer JR, Kawaoka Y, Bean WJ, Suss J, Senne D, Webster RG. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 1993;194(2):781-8.
    連結:
  12. 12. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005;310(5745):77-80.
    連結:
  13. 13. Fang R, Min Jou W, Huylebroeck D, Devos R, Fiers W. Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 1981;25(2):315-23.
    連結:
  14. 14. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009;325(5937):197-201.
    連結:
  15. 15. Mounts AW, Kwong H, Izurieta HS, Ho Y, Au T, Lee M, et al. Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. J Infect Dis 1999;180(2):505-8.
    連結:
  16. 16. Thorson A, Petzold M, Nguyen TK, Ekdahl K. Is exposure to sick or dead poultry associated with flulike illness?: a population-based study from a rural area in Vietnam with outbreaks of highly pathogenic avian influenza. Arch Intern Med 2006;166(1):119-23.
    連結:
  17. 17. Gray GC, McCarthy T, Capuano AW, Setterquist SF, Olsen CW, Alavanja MC. Swine workers and swine influenza virus infections. Emerg Infect Dis 2007;13(12):1871-8.
    連結:
  18. 18. Kawaoka Y, Naeve CW, Webster RG. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 1984;139(2):303-16.
    連結:
  19. 19. Horimoto T, Rivera E, Pearson J, Senne D, Krauss S, Kawaoka Y, et al. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 1995;213(1):223-30.
    連結:
  20. 20. Lee CW, Swayne DE, Linares JA, Senne DA, Suarez DL. H5N2 avian influenza outbreak in Texas in 2004: the first highly pathogenic strain in the United States in 20 years? J Virol 2005;79(17):11412-21.
    連結:
  21. 22. Lipatov AS, Kwon YK, Sarmento LV, Lager KM, Spackman E, Suarez DL, et al. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PLoS Pathog 2008;4(7):e1000102.
    連結:
  22. 23. Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 1993;193(1):503-6.
    連結:
  23. 24. Claas EC, Kawaoka Y, de Jong JC, Masurel N, Webster RG. Infection of children with avian-human reassortant influenza virus from pigs in Europe. Virology 1994;204(1):453-7.
    連結:
  24. 25. OIE. Terrestrial Animal Health Code. In: World Health Organization for Animal Health; 2010.
    連結:
  25. 26. Halvorson DA, Frame DD, Friendshuh KAJ, Shaw DP. Outbreaks of Low Pathogenicity Avian Influenza in U.S.A. Avian Diseases 2003;47:36-46.
    連結:
  26. 27. Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis 1999;5(5):659-71.
    連結:
  27. 28. Alexander DJ. Should we change the definition of avian influenza for eradication purposes? Avian Dis 2003;47(3 Suppl):976-81.
    連結:
  28. 29. Alexander DJ. Should there be a change in the definition of avian influenza for legislative control and trade purposes? In: Avian influenza, prevention and control.: Schrijver R.S. & Koch G. eds; 2005. p. 103-112.
    連結:
  29. 30. Capua I, Marangon S. The avian influenza epidemic in Italy, 1999-2000: a review. Avian Pathol 2000;29(4):289-94.
    連結:
  30. 31. Alexander DJ. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006. Avian Dis 2007;51(1 Suppl):161-6.
    連結:
  31. 32. Hammond GW, Raddatz RL, Gelskey DE. Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis 1989;11(3):494-7.
    連結:
  32. 33. Hope-Simpson RE. The role of season in the epidemiology of influenza. J Hyg (Lond) 1981;86(1):35-47.
    連結:
  33. 34. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA. Global patterns of influenza a virus in wild birds. Science 2006;312(5772):384-8.
    連結:
  34. 35. Jahangir A, Watanabe Y, Chinen O, Yamazaki S, Sakai K, Okamura M, et al. Surveillance of avian influenza viruses in Northern pintails (Anas acuta) in Tohoku District, Japan. Avian Dis 2008;52(1):49-53.
    連結:
  35. 36. Chen H, Smith GJ, Zhang SY, Qin K, Wang J, Li KS, et al. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005;436(7048):191-2.
    連結:
  36. 37. Yen HL. Epidemiological study of interspecies transmission of avian influenza viruses in Taiwan. Taipei: National Taiwan University; 2000.
    連結:
  37. 38. De Marco MA, Campitelli L, Foni E, Raffini E, Barigazzi G, Delogu M, et al. Influenza surveillance in birds in Italian wetlands (1992-1998): is there a host restricted circulation of influenza viruses in sympatric ducks and coots? Vet Microbiol 2004;98(3-4):197-208.
    連結:
  38. 39. De Marco MA, Foni E, Campitelli L, Delogu M, Raffini E, Chiapponi C, et al. Influenza virus circulation in wild aquatic birds in Italy during H5N2 and H7N1 poultry epidemic periods (1998 to 2000). Avian Pathol 2005;34(6):480-5.
    連結:
  39. 40. De Marco MA, Foni GE, Campitelli L, Raffini E, Di Trani L, Delogu M, et al. Circulation of influenza viruses in wild waterfowl wintering in Italy during the 1993-99 period: evidence of virus shedding and seroconversion in wild ducks. Avian Dis 2003;47(3 Suppl):861-6.
    連結:
  40. 41. Shope RE. Swine influenza: I. Experimental transmission and pathology. The Journal of Experimental Medicine 1931;54(3):349.
    連結:
  41. 42. Olsen CW. The emergence of novel swine influenza viruses in North America* 1. Virus Research 2002;85(2):199-210.
    連結:
  42. 43. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. Journal of Virology 1999;73(10):8851.
    連結:
  43. 44. Karasin AI, Schutten MM, Cooper LA, Smith CB, Subbarao K, Anderson GA, et al. Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977-1999: evidence for wholly human and reassortant virus genotypes. Virus Research 2000;68(1):71-85.
    連結:
  44. 45. Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG. Evolution of swine H3N2 influenza viruses in the United States. Journal of Virology 2000;74(18):8243.
    連結:
  45. 47. Maldonado J, Van Reeth K, Riera P, Sitj M, Saubi N, Espu a E, et al. Evidence of the concurrent circulation of H1N2, H1N1 and H3N2 influenza A viruses in densely populated pig areas in Spain. The Veterinary Journal 2006;172(2):377-381.
    連結:
  46. 48. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009;459(7250):1122-5.
    連結:
  47. 49. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 2009;459(7249):931-9.
    連結:
  48. 50. Ozawa M, Basnet S, Burley LM, Neumann G, Hatta M, Kawaoka Y. Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. Journal of Virology 2011;85(9):4596.
    連結:
  49. 52. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 2004;320(2):258-266.
    連結:
  50. 53. Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983;127(2):361-373.
    連結:
  51. 54. Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, Chai W, et al. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature biotechnology 2009;27(9):797-799.
    連結:
  52. 55. Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathogens 2005;1(1):e4.
    連結:
  53. 56. McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell host & microbe 2007;2(4):240-249.
    連結:
  54. 58. Reed C, Angulo FJ, Swerdlow DL, Lipsitch M, Meltzer MI, Jernigan D, et al. Estimates of the prevalence of pandemic (H1N1) 2009, United States, April!VJuly 2009. Emerg Infect Dis 2009;15(12):2004-2007.
    連結:
  55. 59. Influenza virus activity in the world. In: World Health Organization (WHO); 2011.
    連結:
  56. 61. Profeta ML, Palladino G. Serological evidence of human infections with avian influenza viruses. Archives of virology 1986;90(3):355-360.
    連結:
  57. 64. Hirst GK. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. The Journal of Experimental Medicine 1942;75(1):49.
    連結:
  58. 66. Stephenson I, Wood J, Nicholson K, Zambon M. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. Journal of medical virology 2003;70(3):391-398.
    連結:
  59. 67. Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S. Hemagglutinin residues of recent human A (H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology 2001;289(1):74-85.
    連結:
  60. 68. Becker W. The isolation and classification of tern virus: influenza virus A/tern/South Africa/1961. Journal of Hygiene 1966;64(03):309-320.
    連結:
  61. 69. Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 2007;3(5):e61.
    連結:
  62. 70. Senne D, Suarez D, Pedersen J, Panigrahy B. Molecular and biological characteristics of H5 and H7 avian influenza viruses in live-bird markets of the northeastern United States, 1994-2001. Avian diseases 2003;47:898-904.
    連結:
  63. 71. Munster VJ, Wallensten A, Baas C, Rimmelzwaan GF, Schutten M, Olsen B, et al. Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. Emerg Infect Dis 2005;11(10):1545-1551.
    連結:
  64. 74. Trock SC, Huntley JP. Surveillance and control of avian influenza in the New York live bird markets. Avian Diseases 2010;54(s1):340-344.
    連結:
  65. 76. Olivier A. Ecology and epidemiology of avian influenza in ostriches. Developments in biologicals 2006;124:51-57.
    連結:
  66. 78. Terregino C, De Nardi R, Guberti V, Scremin M, Raffini E, Martin AM, et al. Active surveillance for avian influenza viruses in wild birds and backyard flocks in Northern Italy during 2004 to 2006. Avian Pathology 2007;36(4):337-344.
    連結:
  67. 79. Parmley EJ, Bastien N, Booth TF, Bowes V, Buck PA, Breault A, et al. Wild bird influenza survey, Canada, 2005. Emerging Infectious Diseases 2008;14(1):84.
    連結:
  68. 80. Baek YH, Pascua PNQ, Song MS, Park KJ, Kwon H, Lee JH, et al. Surveillance and characterization of low pathogenic H5 avian influenza viruses isolated from wild migratory birds in Korea. Virus Research 2010;150(1-2):119-128.
    連結:
  69. 81. Pedersen K, Swafford SR, DeLiberto TJ. Low Pathogenicity Avian Influenza Subtypes Isolated from Wild Birds in the United States, 2006-2008. Avian Diseases 2010;54(s1):405-410.
    連結:
  70. 83. Pannwitz G, Wolf C, Harder T. Active surveillance for avian influenza virus infection in wild birds by analysis of avian fecal samples from the environment. Journal of wildlife diseases 2009;45(2):512.
    連結:
  71. 84. Haynes L, Arzey E, Bell C, Buchanan N, Burgess G, Cronan V, et al. Australian surveillance for avian influenza viruses in wild birds between July 2005 and June 2007. Australian veterinary journal 2009;87(7):266-272.
    連結:
  72. 85. Breed AC, Harris K, Hesterberg U, Gould G, Londt BZ, Brown IH, et al. Surveillance for avian influenza in wild birds in the European Union in 2007. Avian Diseases 2010;54(s1):399-404.
    連結:
  73. 86. Kulak MV, Ilinykh PA, Zaykovskaya A, Epanchinzeva A, Evstaphiev I, Tovtunec N, et al. Surveillance and Identification of Influenza A Viruses in Wild Aquatic Birds in the Crimea, Ukraine (2006-2008). Avian Diseases 2010.
    連結:
  74. 87. Snoeck CJ, Adeyanju AT, De Landtsheer S, Ottosson U, Manu S, Hagemeijer W, et al. Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds. Journal of General Virology 2011;92(5):1172.
    連結:
  75. 88. Masurel N, de Boer GF, Anker WJ, Huffels AD. Prevalence of influenza viruses A-H1N1 and A-H3N2 in swine in the Netherlands. Comp Immunol Microbiol Infect Dis 1983;6(2):141-9.
    連結:
  76. 89. Ninomiya A, Takada A, Okazaki K, Shortridge KF, Kida H. Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China. Veterinary microbiology 2002;88(2):107-114.
    連結:
  77. 90. Miwa Y, Goto H, Noro S, Sakurada N. Prevalence of human (H1N1) influenza virus-antibody in Japanese swine. J Hyg (Lond) 1986;97(3):503-9.
    連結:
  78. 91. Li H, Xin X, Yang H, Li Y, Qin Y, Xuehui C, et al. SEROLOGICAL AND VIROLOGIC SURVEILLANCE FOR SWINE INFLUENZA VIRUS INFECTIONS AMONG PIGS OVER LARGE AREAS IN CHINA IN 1998~ 2002. In; 2003; 2003. p. 260-261.
    連結:
  79. 94. Van Reeth K, Brown IH, Durrwald R, Foni E, Labarque G, Lenihan P, et al. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003. Influenza Other Respi Viruses 2008;2(3):99-105.
    連結:
  80. 95. Jung K, Song DS, Kang BK, Oh JS, Park BK. Serologic surveillance of swine H1 and H3 and avian H5 and H9 influenza A virus infections in swine population in Korea. Prev Vet Med 2007;79(2-4):294-303.
    連結:
  81. 96. Choi YK, Nguyen TD, Ozaki H, Webby RJ, Puthavathana P, Buranathal C, et al. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. Journal of Virology 2005;79(16):10821.
    連結:
  82. 97. Song XH, Xiao H, Huang Y, Fu G, Jiang B, Kitamura Y, et al. Serological Surveillance of Influenza A Virus Infection in Swine Populations in Fujian Province, China: No Evidence of Naturally Occurring H5N1 Infection in Pigs. Zoonoses and Public Health 2010;57(4):291-298.
    連結:
  83. 99. Suriya R, Hassan L, Omar A, Aini I, Tan C, Lim Y, et al. Seroprevalence and risk factors for influenza A viruses in pigs in Peninsular Malaysia. Zoonoses and Public Health 2008;55(7):342-351.
    連結:
  84. 100. Yu H, Zhou YJ, Li GX, Zhang GH, Liu HL, Yan LP, et al. Further evidence for infection of pigs with human-like H1N1 influenza viruses in China. Virus Research 2009;140(1-2):85-90.
    連結:
  85. 101. Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D, et al. Influenza a (H5N1) viruses from pigs, Indonesia. Emerging Infectious Diseases 2010;16(10):1515!V1523.
    連結:
  86. 103. Olsen CW, Brammer L, Easterday BC, Arden N, Belay E, Baker I, et al. Serologic evidence of H1 swine influenza virus infection in swine farm residents and employees. Emerging Infectious Diseases 2002;8(8):814.
    連結:
  87. 105. Kong LQ, GAO Y, JIANG J, Li YT. Serological surveillance on antibody to influenza A subtype H1, H3, H5, H9 viruses in people of Shanghai [J]. Shanghai Journal of Preventive Medicine 2003;1.
    連結:
  88. 106. Leibler JH, Silbergeld EK, Pekosz A, Gray GC. No Evidence of Infection With Avian Influenza Viruses Among US Poultry Workers in the Delmarva Peninsula, Maryland and Virginia, USA. Journal of Agromedicine 2011;16(1):52-57.
    連結:
  89. 107. Myers KP, Setterquist SF, Capuano AW, Gray GC. Infection due to 3 avian influenza subtypes in United States veterinarians. Clinical Infectious Diseases 2007;45(1):4.
    連結:
  90. 108. Hinjoy S, Puthavathana P, Laosiritaworn Y, Limpakarnjanarat K, Pooruk P, Chuxnum T, et al. Low frequency of infection with avian influenza virus (H5N1) among poultry farmers, Thailand, 2004. Emerging Infectious Diseases 2008;14(3):499.
    連結:
  91. 109. Ogata T, Yamazaki Y, Okabe N, Nakamura Y, Tashiro M, Nagata N, et al. Human H5N2 Avian Influenza Infection in Japan and the FactorsAssociated with High H5N2-Neutralizing Antibody Titer. Journal of epidemiology 2008(0):807040024.
    連結:
  92. 110. Vong S, Coghlan B, Mardy S, Holl D, Seng H, Ly S, et al. Low frequency of poultry-to-human H5N1 virus transmission, southern Cambodia, 2005. Emerg Infect Dis 2006;12(10):1542-7.
    連結:
  93. 112. Schultsz C, Van Dung N, Peiris JSM, Lim W, Garcia JM, Tho ND, et al. Prevalence of Antibodies against Avian Influenza A (H5N1) Virus among Cullers and Poultry Workers in Ho Chi Minh City, 2005. PLoS One 2009;4(11):e7948.
    連結:
  94. 113. Yamazaki Y, Doy M, Okabe N, Yasui Y, Nakashima K, Fujieda T, et al. Serological survey of avian H5N2-subtype influenza virus infections in human populations. Archives of virology 2009;154(3):421-427.
    連結:
  95. 115. Ortiz EJ, Kochel TJ, Capuano AW, Setterquist SF, Gray GC. Avian influenza and poultry workers, Peru, 2006. Influenza and other respiratory viruses 2007;1(2):65-69.
    連結:
  96. 116. Ortiz JR, Katz MA, Mahmoud MN, Ahmed S, Bawa SI, Farnon EC, et al. Lack of evidence of avian-to-human transmission of avian influenza A (H5N1) virus among poultry workers, Kano, Nigeria, 2006. Journal of Infectious Diseases 2007;196(11):1685.
    連結:
  97. 117. Pangesti KNA, Ibrahim F. Antibody anti-H5N1 detection in poultry farmers and workers in poultry collection facilities in Indonesia, 2007. 2010.
    連結:
  98. 118. Kayali G, Ortiz E, Chorazy M, Gray G. Evidence of previous avian influenza infection among US turkey workers. Zoonoses and Public Health 2010;57(4):265-272.
    連結:
  99. 119. Gray GC, McCarthy T, Capuano AW, Setterquist SF, Alavanja MC, Lynch CF. Evidence for avian influenza A infections among Iowa's agricultural workers. Influenza and other respiratory viruses 2008;2(2):61-69.
    連結:
  100. 120. Chen H, Wang Y, Liu W, Zhang J, Dong B, Fan X, et al. Serologic survey of pandemic (H1N1) 2009 virus, Guangxi Province, China. Emerging Infectious Diseases 2009;15(11):1849.
    連結:
  101. 121. Chan YJ, Lee CL, Hwang SJ, Fung CP, Wang FD, Yen DHT, et al. Seroprevalence of antibodies to pandemic (H1N1) 2009 influenza virus among hospital staff in a medical center in Taiwan. Journal of the Chinese Medical Association 2010;73(2):62-66.
    連結:
  102. 122. Gerloff N, Kremer JR, Charpentier E, Sausy A, Olinger CM, Weicherding P, et al. Swine influenza virus antibodies in humans, Western Europe, 2009. Emerging Infectious Diseases 2011;17(3):403.
    連結:
  103. 21. Lin HP. Virological and Serological Surveillance of Avian Influenza Viruses in Live-Bird Markets and Poultry-Related Workers in Taiwan and Kinmen during 2005-2007. Taipei: National Taiwan University; 2007.
  104. 46. Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann P. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bulletin of the World Health Organization 1981;59(1):75.
  105. 51. Subbarao E, London W, Murphy B. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology 1993;67(4):1761.
  106. 57. Situation updates - Pandemic (H1N1) 2009 In: World Health Organization (WHO); 2009.
  107. 60. Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim W, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. Journal of clinical microbiology 1999;37(4):937.
  108. 62. Frank AL, Puck J, Hughes BJ, Cate TR. Microneutralization test for influenza A and B and parainfluenza 1 and 2 viruses that uses continuous cell lines and fresh serum enhancement. Journal of clinical microbiology 1980;12(3):426.
  109. 63. Benne C, Harmsen M, De Jong J, Kraaijeveld C. Neutralization enzyme immunoassay for influenza virus. Journal of clinical microbiology 1994;32(4):987.
  110. 65. Salk JE. A simplified procedure for titrating hemagglutinating capacity of influenza-virus and the corresponding antibody. J. Immunol 1944;49:87-98.
  111. 72. Alexander DJ, Manvell RJ. Country Reports on avian influenza based on responses to the questionnaire. In: Joint 9th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of European Union; 2004; Brussels; 2004. p. 113-129.
  112. 73. Alexander DJ, Manvell RJ. Country Reports on avian influenza based on responses to the questionnaire. In: Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of European Union; 2005; VLA Weybridge; 2005. p. 93-114.
  113. 75. Alexander DJ, Manvell RJ. Country Reports on avian influenza based on responses to the questionnaire. In: Joint 11th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of European Union; 2005; CODA/CERVA Brussels; 2005. p. In press.
  114. 77. Avian Influenza. In: Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Excutive Yuan, Taiwan; 2005-2011.
  115. 82. Brown IH. Country Reports on avian influenza based on responses to the questionnaire. In: Joint 13th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of European Union; 2007; Germany; 2007.
  116. 92. Teodoroff T, Pecoraro M, Baumeister E, Janke B, Machuca M, Cappuccio J, et al. Serological and immunohistochemical studies of influenza virus in fattening pigs in Argentina. In; 2003; 2003. p. 262-63.
  117. 93. Damrongwatanapokn S, Parcheriyanon S, Pinyochon W. Serological study of swine influenza virus h1n1 infection in pigs of Thailand. In; 2003; 2003.
  118. 98. Shieh HK, Chang PC, Chen TH, Li KP, Chan CH. Surveillance of avian, swine influenza in the swine population in Taiwan, 2004. Journal of Microbiology, Immunology and Infection 2008;41:231-242.
  119. 104. Sun H, Ma HB, Y WL. Serological surveillance on antibody to avian influenza subtype H5, H9 virus in poultry breeding workers. China Public Health 2004.
  120. 111. Dejpichai R, Laosiritaworn Y, Phuthavathana P, Uyeki TM, O!
  121. 114. Lu EJ, Liu Y, Chen YY, Zhou Y, Jian LY, Di B, et al. Analysis on Avian Influenza Surveillance in Occupational Population in Guangzhou in 2006. Journal of Tropical Medicine 2007:09.