英文摘要
|
This thesis consists of two main focuses. In the first part, we investigated the structures and properties of the liquid Li-Si alloys, while in the second part we studied those of their amorphous structures. We employed first-principles calculations and molecular dynamic simulations to generate realistic structural models of the liquid and amorphous alloys within various compositions. Based on the generated structural models, we subsequently examined the structures, dynamics, and thermodynamics, as well as the electronic properties of the Li-Si alloy system.
Our results showed that Si atoms usually tend to form covalent bonding in the liquid alloys even when the Si content is very low. Unlike the crystalline systems, Si atoms do not form any specific polyanions in the liquid alloys but form various types of segments containing a wide range of local configurations. Moreover, the average size of Si clusters was found to increase steadily with increasing the Si content, and eventually they turn into a continuous bond network as the Si concentration exceeds a critical value. As the temperature increases, there is no significant change in the average distances between different atom pairs though the size of the Si cluster may drop significantly. The change in the local structures was also manifested in the vibrational spectra in which the high frequency vibrational modes of Si were significantly reduced as the system was at very high temperature.
The calculated dynamic property of the liquid alloys showed that the diffusivities of Li and Si atoms at 1050 K both decrease with increasing the Si content, but the diffusivities of Si atoms appear to be independent of the alloy composition as the temperature is raised above 1500K. Furthermore, the Bader charge analysis showed that there are residual metallic Li atoms in the highly-lithiated liquid alloys, resulting in higher conductivity for those systems. As the Si concentration increases, all the valence electrons of Li in the liquid alloys are ionized by the Si atoms, leading to lower conductivity due to the depletion of free charge carriers in the system.
The structures and electronic properties of the amorphous Li-Si alloys at various compositions were also examined in this study. Our results showed that the short-range order in the amorphous structures is in close resemblance to the liquid alloys at 1050K, but the densities of the amorphous alloys are about 10~15% higher than their liquid phases. Moreover, the configurations of polyanions in the amorphous alloys are similar to those in the liquid states but their average cluster sizes are slightly larger than those in the liquids. On the other hand, we also observed a resistivity plateau at a specific range of composition for the amorphous alloys, which is similar to that found in the liquid phases but the resistivity of the amorphous alloys is slightly higher.
|
参考文献
|
-
1. W. S. Harris, 1958.
連結:
-
2. W. J. Zhang, J Power Sources 196 (1), 13-24 (2011).
連結:
-
3. V. V. Avdeev, A. P. Savchenkova, L. A. Monyakina, I. V. Nikol'skaya and A. V. Khvostov, Journal of Physics and Chemistry of Solids 57 (6-8), 947-949 (1995).
連結:
-
5. M. Tegze and J. Hafner, Phys Rev B 39 (12), 8263 (1989).
連結:
-
6. Y. Senda and et al., Journal of Physics: Condensed Matter 12 (28), 6101 (2000).
連結:
-
9. G. A. de Wijs, G. Pastore, A. Selloni and W. van der Lugt, Phys Rev B 48 (18), 13459 (1993).
連結:
-
10. R. Xu and W. van der Lugt, Physica B: Condensed Matter 173 (4), 435-438 (1991).
連結:
-
11. J. A. Meijer and et al., Journal of Physics: Condensed Matter 1 (31), 5283 (1989).
連結:
-
12. J. A. Meijer, P. Kuiper, C. Van der marel and W. Van der lugt, Z Phys Chem Neue Fol 156, 623-627 (1988).
連結:
-
13. C. van der Marel, W. Geertsma and W. van der Lugt, J Phys F Met Phys 10 (10), 2305-2312 (1980).
連結:
-
14. C. van der Marel, A. B. van Oosten, W. Geertsma and W. van der Lugt, J Phys F Met Phys 12 (8), L129-L131 (1982).
連結:
-
17. H. Kim, C. Y. Chou, J. G. Ekerdt and G. S. Hwang, J Phys Chem C 115 (5), 2514-2521 (2011).
連結:
-
19. H. Okamoto, Journal of Phase Equilibria 11 (3), 306-312 (1990).
連結:
-
22. R. Nesper and H. G. von Schnering, J Solid State Chem 70 (1), 48-57 (1987).
連結:
-
25. L. H. Thomas, Proceedings of the Cambridge Philosophical Society 23, 542-548 (1927).
連結:
-
26. P. Hohenberg and W. Kohn, Physical Review 136 (3B), B864 (1964).
連結:
-
28. J. C. Slater, Physical Review 81 (3), 385 (1951).
連結:
-
29. S. H. Vosko, L. Wilk and M. Nusair, Canadian Journal of Physics 58 (8), 1200-1211 (1980).
連結:
-
33. R. Car and M. Parrinello, Phys Rev Lett 55 (22), 2471 (1985).
連結:
-
34. G. Kresse and J. Hafner, Phys Rev B 47 (1), 558 (1993).
連結:
-
35. D. J. Evans, J Chem Phys 83, 4069 (1985).
連結:
-
37. G. Kresse and D. Joubert, Phys Rev B 59 (3), 1758 (1999).
連結:
-
38. P. E. Blöchl, Phys Rev B 50 (24), 17953 (1994).
連結:
-
39. H. J. Monkhorst and J. D. Pack, Phys Rev B 13 (12), 5188 (1976).
連結:
-
42. P. H. K. d. Jong and et al., Journal of Physics: Condensed Matter 7 (3), 499 (1995).
連結:
-
44. H. Kim, K. E. Kweon, C. Y. Chou, J. G. Ekerdt and G. S. Hwang, J Phys Chem C 114 (41), 17942-17946 (2010).
連結:
-
45. G. A. De wijs, G. Pastore, A. Selloni and W. Van der lugt, Phys Rev B 48 (18), 13459-13468 (1993).
連結:
-
47. E. Sanville, S. D. Kenny, R. Smith and G. Henkelman, Journal of Computational Chemistry 28 (5), 899-908 (2007).
連結:
-
48. W. Tang and et al., Journal of Physics: Condensed Matter 21 (8), 084204 (2009).
連結:
-
52. O. Genser and J. Hafner, J Non-Cryst Solids 250-252 (Part 1), 236-240 (1999).
連結:
-
4. E. Zintl and G. Woltersdorf, Z Elktrochem Angew P 41, 876-879 (1935).
-
7. O. Genser and J. Hafner, Phys Rev B 6314 (14), - (2001).
-
8. P. H. K. de Jong, P. Verkerk, W. van der Lugt and L. A. de Graaf, J Non-Cryst Solids 156-158 (Part 2), 978-981 (1993).
-
15. V. L. Chevrier and J. R. Dahn, Journal of The Electrochemical Society 157 (4), A392-A398 (2010).
-
16. V. L. Chevrier, J. W. Zwanziger and J. R. Dahn, J Alloy Compd 496 (1-2), 25-36 (2010).
-
18. M. C. Bohm, R. Ramirez, R. Nesper and H. G. Vonschnering, Ber Bunsen Phys Chem 89 (5), 465-481 (1985).
-
20. Y. Kubota, M. C. S. Escaño, H. Nakanishi and H. Kasai, J Alloy Compd 458 (1-2), 151-157 (2008).
-
21. H. v. Leuken, G. A. de Wijs, W. van der Lugt and R. A. d. Groot, Phys Rev B 53 (16), 10599 (1996).
-
23. Y. Kubota, M. C. S. Escano, H. Nakanishi and H. Kasai, J Appl Phys 102 (5) (2007).
-
24. M. C. Bohm, R. Ramirez, R. Nesper and H. G. Vonschnering, Phys Rev B 30 (8), 4870-4873 (1984).
-
27. W. Kohn and L. J. Sham, Physical Review 140 (4A), A1133 (1965).
-
30. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys Rev B 46 (11), 6671 (1992).
-
31. S. G. Louie, S. Froyen and M. L. Cohen, Phys Rev B 26 (4), 1738 (1982).
-
32. L. Verlet, Physical Review 159 (1), 98 (1967).
-
36. G. Kresse and J. Furthmüller, Phys Rev B 54 (16), 11169 (1996).
-
40. P. Verkerk, S. Ahda, P. H. K. d. Jong and R. Kinderman, edited by W. S. Howells and A. K. Soper (1991).
-
41. K. Seifert-Lorenz and J. Hafner, Phys Rev B 59 (2), 843-854 (1999).
-
43. I. Scarontich, R. Car and M. Parrinello, Phys Rev B 44 (9), 4262 (1991).
-
46. G. Henkelman, A. Arnaldsson and H. Jónsson, Computational Materials Science 36 (3), 354-360 (2006).
-
49. A. D. Becke and K. E. Edgecombe, J Chem Phys 92 (9), 5397-5403 (1990).
-
50. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss and H. G. von Schnering, Angewandte Chemie International Edition in English 31 (2), 187-188 (1992).
-
51. M. Gajdoscaron, K. Hummer, G. Kresse, Furthm, uuml, J. ller and F. Bechstedt, Phys Rev B 73 (4), 045112 (2006).
|