参考文献
|
-
[7] T. George and S. Merugu. A scalable collaborative filtering framework based on co-clustering. In Data Mining, Fifth IEEE international conference on, pages 4–pp. IEEE, 2005.
連結:
-
[8] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.
連結:
-
[9] R. He and J. McAuley. Vbpr: Visual bayesian personalized ranking from implicit feedback. In AAAI, pages 144–150, 2016.
連結:
-
[13] S. Huang, J. Ma, P. Cheng, and S. Wang. A hybrid multigroup coclustering recommendation framework based on information fusion. ACM Transactions on Intelligent Systems and Technology (TIST), 6(2):27, 2015.
連結:
-
[14] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems, pages 135–142. ACM, 2010.
連結:
-
[17] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8), 2009.
連結:
-
[18] J. Leski. Towards a robust fuzzy clustering. Fuzzy Sets and Systems, 137(2):215–233, 2003.
連結:
-
[19] Y.-C. Lien and P.-J. Cheng. Improving one-class collaborative filtering with manifold regularization by data-driven feature representation. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 565–577. Springer, 2017.
連結:
-
[20] H. Lutkepohl. Handbook of matrices. Computational Statistics and Data Analysis, 2(25):243, 1997.
連結:
-
[24] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 287–296. ACM, 2011.
連結:
-
[26] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 502–511. IEEE, 2008.
連結:
-
[27] M. Rege, M. Dong, and F. Fotouhi. Co-clustering documents and words using bipartite isoperimetric graph partitioning. In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 532–541. IEEE, 2006.
連結:
-
[32] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.
連結:
-
[35] B. Xu, J. Bu, C. Chen, and D. Cai. An exploration of improving collaborative recommender systems via user-item subgroups. In Proceedings of the 21st international conference on World Wide Web, pages 21–30. ACM, 2012.
連結:
-
[36] L. Zhang, C. Chen, J. Bu, Z. Chen, D. Cai, and J. Han. Locally discriminative coclustering. IEEE Transactions on Knowledge and Data Engineering, 24(6):1025–1035, 2012.
連結:
-
[37] Y. Zhang, M. Zhang, Y. Liu, and S. Ma. Improve collaborative filtering through bordered block diagonal form matrices. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 313–322. ACM, 2013.
連結:
-
[38] T. Zhao, J. McAuley, and I. King. Improving latent factor models via personalized feature projection for one class recommendation. In Proceedings of the 24th ACM international on conference on information and knowledge management, pages 821–830. ACM, 2015.
連結:
-
[1] I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent framework for learning from implicit feedback. In Proceedings of the 26th International Conference on World Wide Web, pages 1341–1350. International World Wide Web Conferences Steering Committee, 2017.
-
[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of machine learning research, 7(Nov):2399–2434, 2006.
-
[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc., 1998.
-
[4] J. Bu, X. Shen, B. Xu, C. Chen, X. He, and D. Cai. Improving collaborative recommendation via user-item subgroups. IEEE Transactions on Knowledge and Data Engineering, 28(9):2363–2375, 2016.
-
[5] O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, P. Maini, and R. Erban. Diffuzzy: a fuzzy clustering algorithm for complex datasets. International Journal of Computational Intelligence in Bioinformatics and Systems Biology, 1(4):402–417, 2010.
-
[6] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 269–274. ACM, 2001.
-
[10] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, pages 173–182. International World Wide Web Conferences Steering Committee, 2017.
-
[11] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 549–558. ACM, 2016.
-
[12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 263–272. Ieee, 2008.
-
[15] J.-Y. Jiang, P.-J. Cheng, and W. Wang. Open source repository recommendation in social coding. In Proceedings of the 40th international ACM SIGIR conference on Research & development in information retrieval. ACM, 2017.
-
[16] M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang, W. Zhu, and S. Yang. Social contextual recommendation. In Proceedings of the 21st ACM international conference on Information and knowledge management, pages 45–54. ACM, 2012.
-
[21] H. Ma. An experimental study on implicit social recommendation. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 73–82. ACM, 2013.
-
[22] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 203–210. ACM, 2009.
-
[23] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM conference on Information and knowledge management, pages 931–940. ACM, 2008.
-
[25] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems, pages 849–856, 2002.
-
[28] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.
-
[29] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In Proceedings of the sixth ACM conference on Recommender systems, pages 139–146. ACM, 2012.
-
[30] P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and Y. Manolopoulos. Nearest-biclusters collaborative filtering with constant values. Advances in web mining and web usage analysis, pages 36–55, 2007.
-
[31] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Advances in neural information processing systems, pages 2643–2651, 2013.
-
[33] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola. Cofi rank-maximum margin matrix factorization for collaborative ranking. In Advances in neural information processing systems, pages 1593–1600, 2008.
-
[34] Y. Wu, X. Liu, M. Xie, M. Ester, and Q. Yang. Cccf: Improving collaborative filtering via scalable user-item co-clustering. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 73–82. ACM, 2016.
|