题名

透過雙分群正則化改進單類別協同過濾模型

并列篇名

CoReg: Improving One-Class Collaborative Filtering via Co-Cluster Regularization

DOI

10.6342/NTU201702649

作者

廖冠豪

关键词

推薦系統 ; 單類別協同過濾 ; 矩陣分解 ; 雙分群 ; 流形正則化 ; Recommender Systems ; One-Class Collaborative Filtering ; Matrix Factorization ; Co-Clustering ; Manifold Regularization

期刊名称

臺灣大學資訊網路與多媒體研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

鄭卜壬

内容语文

英文

中文摘要

雖然矩陣分解已經成為單類別協同過濾問題的主流方法,使用者之間的關係和項目之間的關係卻沒有被直接學習到。相似度計算在尋找使用者之間的關係和項目之間的關係上扮演著核心的角色。然而,由於回饋矩陣的稀疏度極高,在整條行為向量上做相似度計算會讓我們不容易為使用者和項目找到高品質的鄰居。為此,將雙分群的技術應用在回饋矩陣上來尋找使用者項目小群集是一個選項。然而,大部分雙分群的研究都在各個使用者項目小群集中執行局部並獨立的協同過濾模型,造成了排序導向的協同過濾模型無法學習到並未分類至同一個小群集的項目之間的喜好度差距。為了解決這個問題,我們提出了一個名為「雙分群正則化」的新架構,無縫地將著名的流形正則化和使用者項目分群結合在一起。相對於流形正則化,雙分群正則化同時降低了拉近帶雜訊鄰居的危險性以及計算開銷。實驗結果證明了雙分群正則化不但加強了矩陣分解中使用者之間的關係和項目之間的關係,也是一個能夠更佳地使用使用者項目分群來增進單類別協同過濾模型表現的方法。

英文摘要

Although Matrix Factorization (MF) has been the dominant approach in One-Class Collaborative Filtering (OCCF) problems, the user-user relationship and item-item relationship are not directly captured. The similarity computation plays the key role in discovering user-user relationship and item-item relationship. However, due to the high sparsity of feedback matrix, computing similarity regarding the entire behavior vector leads to the difficulty of finding high-quality neighbors of users and items. To this end, finding user-item subgroups by applying co-clustering techniques to the feedback matrix is an option. Nevertheless, most of the previous work applies a CF model locally and independently inside each discovered user-item subgroup, which makes ranking-oriented CF models fail to learn the preference differences between items which are not grouped into the same user-item subgroups. To deal with this problem, we propose a new framework Co-Cluster Regularization (CoReg), which seamlessly combines the well-known Manifold Regularization with user-item co-clusters. Compared to Manifold Regularization, CoReg simultaneously reduces the risk of drawing noisy neighbors and computation overhead. Experimental results show that CoReg not only reinforces the user-user relationship and item-item relationship of MF, but also serves as the better way to boost the performance of OCCF models by utilizing user-item co-clustering.

主题分类 基礎與應用科學 > 資訊科學
電機資訊學院 > 資訊網路與多媒體研究所
参考文献
  1. [7] T. George and S. Merugu. A scalable collaborative filtering framework based on co-clustering. In Data Mining, Fifth IEEE international conference on, pages 4–pp. IEEE, 2005.
    連結:
  2. [8] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.
    連結:
  3. [9] R. He and J. McAuley. Vbpr: Visual bayesian personalized ranking from implicit feedback. In AAAI, pages 144–150, 2016.
    連結:
  4. [13] S. Huang, J. Ma, P. Cheng, and S. Wang. A hybrid multigroup coclustering recommendation framework based on information fusion. ACM Transactions on Intelligent Systems and Technology (TIST), 6(2):27, 2015.
    連結:
  5. [14] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems, pages 135–142. ACM, 2010.
    連結:
  6. [17] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8), 2009.
    連結:
  7. [18] J. Leski. Towards a robust fuzzy clustering. Fuzzy Sets and Systems, 137(2):215–233, 2003.
    連結:
  8. [19] Y.-C. Lien and P.-J. Cheng. Improving one-class collaborative filtering with manifold regularization by data-driven feature representation. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 565–577. Springer, 2017.
    連結:
  9. [20] H. Lutkepohl. Handbook of matrices. Computational Statistics and Data Analysis, 2(25):243, 1997.
    連結:
  10. [24] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 287–296. ACM, 2011.
    連結:
  11. [26] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 502–511. IEEE, 2008.
    連結:
  12. [27] M. Rege, M. Dong, and F. Fotouhi. Co-clustering documents and words using bipartite isoperimetric graph partitioning. In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 532–541. IEEE, 2006.
    連結:
  13. [32] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.
    連結:
  14. [35] B. Xu, J. Bu, C. Chen, and D. Cai. An exploration of improving collaborative recommender systems via user-item subgroups. In Proceedings of the 21st international conference on World Wide Web, pages 21–30. ACM, 2012.
    連結:
  15. [36] L. Zhang, C. Chen, J. Bu, Z. Chen, D. Cai, and J. Han. Locally discriminative coclustering. IEEE Transactions on Knowledge and Data Engineering, 24(6):1025–1035, 2012.
    連結:
  16. [37] Y. Zhang, M. Zhang, Y. Liu, and S. Ma. Improve collaborative filtering through bordered block diagonal form matrices. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 313–322. ACM, 2013.
    連結:
  17. [38] T. Zhao, J. McAuley, and I. King. Improving latent factor models via personalized feature projection for one class recommendation. In Proceedings of the 24th ACM international on conference on information and knowledge management, pages 821–830. ACM, 2015.
    連結:
  18. [1] I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent framework for learning from implicit feedback. In Proceedings of the 26th International Conference on World Wide Web, pages 1341–1350. International World Wide Web Conferences Steering Committee, 2017.
  19. [2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of machine learning research, 7(Nov):2399–2434, 2006.
  20. [3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc., 1998.
  21. [4] J. Bu, X. Shen, B. Xu, C. Chen, X. He, and D. Cai. Improving collaborative recommendation via user-item subgroups. IEEE Transactions on Knowledge and Data Engineering, 28(9):2363–2375, 2016.
  22. [5] O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, P. Maini, and R. Erban. Diffuzzy: a fuzzy clustering algorithm for complex datasets. International Journal of Computational Intelligence in Bioinformatics and Systems Biology, 1(4):402–417, 2010.
  23. [6] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 269–274. ACM, 2001.
  24. [10] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, pages 173–182. International World Wide Web Conferences Steering Committee, 2017.
  25. [11] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 549–558. ACM, 2016.
  26. [12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 263–272. Ieee, 2008.
  27. [15] J.-Y. Jiang, P.-J. Cheng, and W. Wang. Open source repository recommendation in social coding. In Proceedings of the 40th international ACM SIGIR conference on Research & development in information retrieval. ACM, 2017.
  28. [16] M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang, W. Zhu, and S. Yang. Social contextual recommendation. In Proceedings of the 21st ACM international conference on Information and knowledge management, pages 45–54. ACM, 2012.
  29. [21] H. Ma. An experimental study on implicit social recommendation. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 73–82. ACM, 2013.
  30. [22] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 203–210. ACM, 2009.
  31. [23] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM conference on Information and knowledge management, pages 931–940. ACM, 2008.
  32. [25] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems, pages 849–856, 2002.
  33. [28] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.
  34. [29] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In Proceedings of the sixth ACM conference on Recommender systems, pages 139–146. ACM, 2012.
  35. [30] P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and Y. Manolopoulos. Nearest-biclusters collaborative filtering with constant values. Advances in web mining and web usage analysis, pages 36–55, 2007.
  36. [31] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Advances in neural information processing systems, pages 2643–2651, 2013.
  37. [33] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola. Cofi rank-maximum margin matrix factorization for collaborative ranking. In Advances in neural information processing systems, pages 1593–1600, 2008.
  38. [34] Y. Wu, X. Liu, M. Xie, M. Ester, and Q. Yang. Cccf: Improving collaborative filtering via scalable user-item co-clustering. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 73–82. ACM, 2016.