题名

節能之水下網路機率式路由設計

并列篇名

Energy-Efficient Opportunistic Routing for Underwater Sensor Networks

DOI

10.6342/NTU201602072

作者

劉庠宏

关键词

水下感測網路 ; 機率式路由 ; 延遲感知網路 ; 睡眠排程 ; 節能路由設計 ; Underwater sensor network ; opportunistic routing ; delay-aware network ; sleep-wake scheduling ; energy-efficient routing protocols

期刊名称

臺灣大學資訊網路與多媒體研究所學位論文

卷期/出版年月

2016年

学位类别

博士

导师

周承復

内容语文

英文

中文摘要

近年來水下感測網路漸漸被廣泛討論及研究,各種應用也隨之而生。水下感測網路利用的是聲波,因為水是高頻的濾波器,如果利用電磁波傳遞,訊號會衰減的很快。對於不同的水下感測網路的應用需求也會不同,必須考量的條件也不同,例如長時間水下監控的應用或是即時的通訊應用,必須考量電源的使用效率或是縮短傳輸延遲。但是由於陸地上感測網路與水下感測網路的傳輸介質不同,水下感測網路對於對於電源使用效率或是縮短傳輸延遲的路由設計,不能以陸地上感測網路的環境所設計的路由設計,直接套用在水下感測網路。 機率式路由[1] 的概念已經被廣為應用,在無線感測網路中增進資料傳輸效率也已被普遍認同。機率式路由利用無線網路廣播的特性,從相鄰節點中找出一個較好的節點進行封包傳送。在本篇論文中我們結合機率式路由的概念,針對長時間的水下監控應用和即時水下通訊應用,提出了分別適用這兩個應用的路由演算法。首先,我們針對即時水下通訊應用提出延遲容忍之水下機率式路由協定,稱為UWOR。點對點間的延遲是影響水下即時通訊應用重要的因素之一,UWOR 在滿足給定之點對點容忍延遲條件下,去最大化在期限內所收到的封包數量,同時UWOR 也考慮點對點封包傳輸時所消耗的電源。最後,我們針對長時間水下監控應用提出非同步睡眠-喚醒排程之水下機率式路由協定,稱為UWASSOR。UWASSOR 的目標是要讓水下長時間間監控的應用延長其網路運作時間。UWASSOR 同時考慮睡眠-喚醒排程與機率式路由,其中睡眠-喚醒排程可以減少電源的消耗,因為當節點在沒有傳輸或是接收資料時進入睡眠模式可以減少電源的消耗,最後我們藉由實驗驗證睡眠-喚醒排程與機率式路由可達到延長網路運作時間的目標。

英文摘要

Underwater sensor networks (UWSNs) have received growing interests recently. In UWSNs, acoustic channel is used as the communication method. Such networks, due to the need for different applications, such that long-term monitoring or time critical communication must be delay aware or energy efficient depends on the applications. However, there are fundamental differences between radio interfaces and acoustic modems. The characteristics of UWSNs and the requirements for energy efficiency or delay-aware make the exist routing protocols difficult to directly adapt ideas which have already been proven reliable in terrestrial sensor networks. Opportunistic routing [1] (OR) takes advantages of the spatial diversity and broadcast nature of wireless networks to combat the time-varying links by involving multiple neighboring nodes (forwarding candidates) for each packet relay. In this thesis, we integrated the idea of opportunistic-based routing and proposed two routing protocols for two types of UWSNs applications: time-critical aquatic exploration and long-term aquatic monitoring. The first routing protocol is called Delay-Sensitive Opportunistic Routing for Underwater Sensor Networks (UWOR). End-to-end latency is one of the key elements for delay-sensitive UWSNs applications. UWOR maximizes data goodput while satisfying end-to-end latency requirements of time-critical aquatic exploration applications in UWSNs. UWOR focuses on two metrics for UWSNs: goodput and energy cost. Goodput is used to measure the amount of data received before the deadline, and energy accounts for end-to-end per-packet energy consumption. The second routing protocol is call Asynchronous Sleep-wake Scheduling and Opportunistic Routing for Underwater Sensor Networks (UWASSOR). In UWASSOR, we jointly consider the sleep-awake scheduling and opportunistic-based routing into underwater routing. Sleep-wake scheduling can reduce the energy consumption because sensor nodes can enter sleep mode while there is no packet to send or relay. Our goal is to maximum the network lifetime for long-term aquatic monitoring applications.

主题分类 基礎與應用科學 > 資訊科學
電機資訊學院 > 資訊網路與多媒體研究所
参考文献
  1. [1] Sanjit Biswas and Robert Morris. Exor: Opportunistic multi-hop routing for wireless networks. SIGCOMM Comput. Commun. Rev., 35(4):133--144, August 2005.
    連結:
  2. [2] Sandra Sendra, Senior Jaime Lloret, Jose Miguel Jimenez, and Lorena Parra. Underwater acoustic modems. IEEE Sensors Journal, 16(11):4063--4071, June 2016.
    連結:
  3. [3] Wei Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3):493--506, June 2004.
    連結:
  4. [4] C. C. Hsu, M. S. Kuo, S. C. Wang, and C. F. Chou. Joint design of asynchronous sleep-wake scheduling and opportunistic routing in wireless sensor networks. IEEE Transactions on Computers, 63(7):1840--1846, July 2014.
    連結:
  5. [6] A. Khan and L. Jenkins. Undersea wireless sensor network for ocean pollution prevention. In in Proceedings of the 3rd International Conference on Communication Systems Software and Middleware and Workshops, pages 2--8, January 2008.
    連結:
  6. [7] G. Ac¡Mar and A. E. Adams. An underwater acoustic sensor network protocol for real-time environmental monitoring in coastal areas. In IEE Proceedings: Radar, Sonar and Navigation, volume 153, pages 365--380, 2006.
    連結:
  7. [8] C. Alippi, R. Camplani, C. Galperti, and M. Roveri. A robust, adaptive, solarpowered wsn framework for aquatic environmental monitoring. In IEEE Sensors Journal, volume 11, pages 45--55, 2011.
    連結:
  8. [10] P. Kumar, P. Kumar, P. Priyadarshini, and Srija. Underwater acoustic sensor network for early warning generation. In 2012 Oceans, pages 1--6, Oct 2012.
    連結:
  9. [11] Gitews (german indonesian tsunami early warning system), http://www.gitews.org/en/seismology/.
    連結:
  10. [13] D. P. Williams. On optimal auv track-spacing for underwater mine detection. In 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 4755--4762, May 2010.
    連結:
  11. [14] C. Rao, K. Mukherjee, S. Gupta, A. Ray, and S. Phoha. Underwater mine detection using symbolic pattern analysis of sidescan sonar images. In 2009 American Control Conference, pages 5416--5421, June 2009.
    連結:
  12. [15] C. Barngrover, R. Kastner, and S. Belongie. Semisynthetic versus real-world sonar training data for the classification of mine-like objects. IEEE Journal of Oceanic Engineering, 40(1):48--56, Jan 2015.
    連結:
  13. [16] Keyu Chen, Maode Ma, En Cheng, Fei Yuan, and Wei Su. A survey on mac protocols for underwater wireless sensor networks. Communications Surveys Tutorials, IEEE, 16:1433--1447, March 2014.
    連結:
  14. [20] A. Sanchez, S. Blanc, P. Yuste, and J. J. Serrano. A low cost and high efficient acoustic modem for underwater sensor networks. In OCEANS 2011 IEEE - Spain, pages 1--10, June 2011.
    連結:
  15. [21] N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey. An integrated, underwater optical /acoustic communications system. In OCEANS 2010 IEEE - Sydney, pages 1--6, May 2010.
    連結:
  16. [22] B. Benson, Y. Li, B. Faunce, K. Domond, D. Kimball, C. Schurgers, and R. Kastner. Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, 2(3):58--61, Sept 2010.
    連結:
  17. [23] Antonio Sanchez, Sara Blanc, Pedro Yuste, Angel Perles, and Juan Jose Serrano. An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks. Sensors, 12(6):6837, 2012.
    連結:
  18. [25] N. Nowsheen, C. Benson, and M. Frater. A high data-rate, software-defined underwater acoustic modem. In OCEANS 2010 MTS/IEEE SEATTLE, pages 1--5, Sept 2010.
    連結:
  19. [26] Iuliu Vasilescu and et al. Aquanodes: An underwater sensor network, 2007.
    連結:
  20. [27] L. Wu, J. Trezzo, D. Mirza, P. Roberts, J. Jaffe, Y. Wang, and R. Kastner. Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embedded Systems Letters, 4(1):1--4, March 2012.
    連結:
  21. [32] Link Quest Telecom Ltd. Linkquest underwater acoustic modems features, http://link-quest.com/html/models1.htm.
    連結:
  22. [40] Hsiang-Chih Chan and Chi-Fang Chen. Seismic monitoring of western Pacific typhoons. 33(23):7398--7412, 2012.
    連結:
  23. [41] Wu-Cheng Chi, Wan-Jou Chen, Ban-Yuan Kuo, and David Dolenc. Seismic monitoring of western Pacific typhoons. 31(4):239--251, Dec. 2010.
    連結:
  24. [43] Z. Zhou, Z. Peng, J. H. Cui, and Z. Shi. Efficient multipath communication for timecritical applications in underwater acoustic sensor networks. IEEE/ACM Transactions on Networking, 19(1):28--41, Feb 2011.
    連結:
  25. [48] N. Nicolaou, A. See, P. Xie, J. H. Cui, and D. Maggiorini. Improving the robustness of location-based routing for underwater sensor networks. In OCEANS 2007 - Europe, pages 1--6, June 2007.
    連結:
  26. [49] R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. Gedar:Geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In 2014 IEEE International Conference on Communications (ICC), pages 251--256, June 2014.
    連結:
  27. [50] Hai Yan, Zhijie Jerry Shi, and Jun-Hong Cui. DBR: Depth-based Routing for Underwater Sensor Networks. In NETWORKING'08: Proceedings of the 7th international IFIP-TC6 networking conference on AdHoc and sensor networks, wireless networks, next generation internet, pages 72 --86, 2008.
    連結:
  28. [52] Y. Noh, U. Lee, P. Wang, B. S. C. Choi, and M. Gerla. Vapr: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5):895--908, May 2013.
    連結:
  29. [53] Paolo Casari and Michele Zorzi. Protocol design issues in underwater acoustic networks. Comput. Commun., 34(17):2013--2025, Nov. 2011.
    連結:
  30. [55] Y. Zhou, K. Chen, J. He, and H. Guan. Enhanced slotted aloha protocols for underwater sensor networks with large propagation delay. In Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, pages 1--5, May 2011.
    連結:
  31. [56] Y. J. Chen and H. L. Wang. Ordered csma: a collision-free mac protocol for underwater acoustic networks. In OCEANS 2007, pages 1--6, Sept 2007.
    連結:
  32. [58] Z. Peng, Yibo Zhu, Z. Zhou, Z. Guo, and J. H. Cui. Cope-mac: A contention-based medium access control protocol with parallel reservation for underwater acoustic networks. In OCEANS 2010 IEEE - Sydney, pages 1--10, May 2010.
    連結:
  33. [59] C. M. Chao and Y. Z. Wang. A multiple rendezvous multichannel mac protocol for underwater sensor networks. In 2010 IEEE Wireless Communication and Networking Conference, pages 1--6, April 2010.
    連結:
  34. [60] C. M. Chao, Y. Z. Wang, and M. W. Lu. Multiple-rendezvous multichannel mac protocol design for underwater sensor networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(1):128--138, 2013.
    連結:
  35. [61] L. C. Kuo and T. Melodia. Distributed medium access control strategies for mimo underwater acoustic networking. IEEE Transactions on Wireless Communications, 10(8):2523--2533, August 2011.
    連結:
  36. [62] Z. Zhou, Z. Peng, J. H. Cui, and Z. Jiang. Handling triple hidden terminal problems for multichannel mac in long-delay underwater sensor networks. IEEE Transactions on Mobile Computing, 11(1):139--154, Jan 2012.
    連結:
  37. [63] M. Yang, M. Gao, C. H. Foh, J. Cai, and P. Chatzimisios. Dc-mac: A data-centric multi-hop mac protocol for underwater acoustic sensor networks. In Computers and Communications (ISCC), 2011 IEEE Symposium on, pages 491--496, June 2011.
    連結:
  38. [64] Paul Wang, Uichin Lee, Dustin Torres, and Mario Gerla. DOTS: A propagation Delay-aware Opportunistic MAC protocol for underwater sensor networks. In ICNP'10: 18th IEEE International Conference on Network Protocols, pages 183--192, 2010.
    連結:
  39. [65] M. T. Chen, Y. C. Shen, J. Luis, and C. F. Chou. Energy-efficient or-based mac protocol for underwater sensor networks. In IEEE SENSORS 2014 Proceedings, pages 118--121, Nov 2014.
    連結:
  40. [66] I. Khalil, Y. Gadallah, and M. H. Khreishah. An adaptive ofdma-based mac protocol for underwater acoustic wireless sensor networks. Sensors, 12(7):8782--8805, July 2012.
    連結:
  41. [68] F. Bouabdallah and R. Boutaba. A distributed ofdma medium access control for underwater acoustic sensors networks. In 2011 IEEE International Conference on Communications (ICC), pages 1--5, June 2011.
    連結:
  42. [69] Chih-Cheng Hsu, Kuang-Fu Lai, Cheng-Fu Chou, and K. Ching-Ju Lin. St-mac:Spatial-temporal mac scheduling for underwater sensor networks. In INFOCOM 2009, IEEE, pages 1827--1835, April 2009.
    連結:
  43. [70] Yang Guan, Chien-Chung Shen, and J. Yackoski. Mac scheduling for high throughput underwater acoustic networks. In Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pages 197--202, March 2011.
    連結:
  44. [71] Hui-Jin Cho, Jung-Il Namgung, Nam-Yeol Yun, Soo-Hyun Park, Chang-Hwa Kim, and Young-Sun Ryuh. Contention free mac protocol based on priority in underwater acoustic communication. In OCEANS, 2011 IEEE - Spain, pages 1--7, June 2011.
    連結:
  45. [72] Yen-Da Chen, Chan-Ying Lien, Sun-Wei Chuang, and Kuei-Ping Shih. Dsss: A tdma-based mac protocol with dynamic slot scheduling strategy for underwater acoustic sensor networks. In OCEANS, 2011 IEEE - Spain, pages 1--6, June 2011.
    連結:
  46. [75] W. Lin, D. Li, J. Chen, T. Sun, and T. Wang. A wave-like amendment-based time division medium access slot allocation mechanism for underwater acoustic sensor networks. In International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,2009. CyberC '09., pages 369--374, Oct 2009.
    連結:
  47. [76] W. H. Liao and C. C. Huang. Sf-mac: A spatially fair mac protocol for underwater acoustic sensor networks. IEEE Sensors Journal, 12(6):1686--1694, June 2012.
    連結:
  48. [79] R. Diamant and L. Lampe. A hybrid spatial reuse mac protocol for ad-hoc underwater acoustic communication networks. In 2010 IEEE International Conference on Communications Workshops, pages 1--5, May 2010.
    連結:
  49. [80] R. Diamant and L. Lampe. Spatial reuse time-division multiple access for broadcast ad hoc underwater acoustic communication networks. IEEE Journal of Oceanic Engineering, 36(2):172--185, April 2011.
    連結:
  50. [81] J. I. Namgung, S. Y. Shin, N. Y. Yun, and S. H. Park. Adaptive gts allocation scheme based on ieee 802.15.4 for underwater acoustic sensor networks. In 8th International Conference on Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP, pages 297--301, Dec 2010.
    連結:
  51. [85] S. Gopi, K. Govindan, D. Chander, U.B. Desai, and S.N. Merchant. E-pulrp:Energy optimized path unaware layered routing protocol for underwater sensor networks. IEEE Transactions on Wireless Communications, 9(11):3391--3401, November 2010.
    連結:
  52. [86] Marjan Moradi, Javad Rezazadeh, and Abdul Samad Ismail. A reverse localization scheme for underwater acoustic sensor networks. Sensors, 12(4):4352--4380, 2012.
    連結:
  53. [87] Sangho Lee and Kiseon Kim. Localization with a mobile beacon in underwater acoustic sensor networks. Sensors, 12(5):5486--5501, 2012.
    連結:
  54. [88] Haitao Yu, Nianmin Yao, Zhenguo Gao, Zhimao Lu, and Bingcai Chen. Improved DBR Routing Protocol for Underwater Acoustic Sensor Networks. In American Scientific Publishers, volume 12, pages 230--235, February 2014.
    連結:
  55. [89] Zhong Zhou, Zheng Peng, Jun-Hong Cui, and Zhijie Shi. Energy Efficient Multipath Communication for Time-critical Applications in Underwater Sensor Networks. Transactions on Networking, 19(1):28 -- 41, Feb. 2001.
    連結:
  56. [90] Mohsin Raza Jafria, Muhammad Moid Sandhua, Kamran Latifb, Zahoor Ali Khand, Ansar Ul Haque Yasare, and Nadeem Javaida. Towards delay-sensitive routing in underwater wireless sensor networks. In The 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, volume 37, pages 228--235, 2014.
    連結:
  57. [93] Long Cheng, Jiannong Cao, Canfeng Chen, Jian Ma, and S. Das. Exploiting Geographic Opportunistic Routing for Soft QoS Provisioning in Wireless Sensor Networks. In MASS'10: 7th IEEE International Conference on Mobile Adhoc and Sensor Systems, pages 292--301, November 2007.
    連結:
  58. [94] K. Kredo II and P. Mohapatra. Distributed Scheduling and Routing in Underwater Wireless Networks. In GLOBECOM'10: IEEE Global Telecommunications Conference, pages 1-- 6, 2010.
    連結:
  59. [97] J. Benson, T. O'Donovan, U. Roedig, and CJ Sreenan. Opportunistic aggregation over duty cycled communications in wireless sensor networks. In IPSN'08: International Conference on Information Processing in Sensor Networks, pages 307--318, 2008.
    連結:
  60. [98] Chih-Cheng Hsu, Hsiang-Hung Liu, J.L. Garcia Gomez, and Cheng-Fu Chou. Delay-sensitive opportunistic routing for underwater sensor networks. In In IEEE Sensors Journal, volume 15, pages 6584--6591, November 2015.
    連結:
  61. [101] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L.K. Saul, , and G.M. Voelker. eDoctor: automatically diagnosing abnormal battery drain issues on smartphones. In Proceedings of the 10th USENIX conference on Networked Systems Design and Implementation (NSDI), pages 57--70, 2013.
    連結:
  62. [102] C. C. Hsu, H. H. Liu, J. L. Garcia Gomez, and C. F. Chou. Delay-sensitive opportunistic routing for underwater sensor networks. IEEE Sensors Journal, 15(11): 6584--6591, Nov 2015.
    連結:
  63. [103] Chane L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless networks. SIGCOMM Comput. Commun. Rev., 27(4):39--49, Oct 1997.
    連結:
  64. [5] M. Shakir, M. A. Khan, S. A. Malik, and Izhar ul Haq. Design of underwater sensor networks for water quality monitoring. In World Applied Sciences Journal, volume 17, pages 1441--1444, 2012.
  65. [9] A. Khan and L. Jenkins. Undersea wireless sensor network for ocean pollution prevention. In 3rd International Conference on Communication Systems Software and Middleware and Workshops, 2008. COMSWARE 2008, pages 2--8, Jan 2008.
  66. [12] S. Kumar, A. R. Perry, C. R. Moeller, D. C. Skvoretz, M. J. Ebbert, R. K. Ostrom, S. L. Bennett, and P. V. Czipott. Real-time tracking magnetic gradiometer for underwater mine detection. In OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04, volume 2, pages 874--878 Vol.2, Nov 2004.
  67. [17] http://acomms.whoi.edu/micro-modem/.
  68. [18] Oceantools subsea battery packs, http://www.oceantools.co.uk/survey/oceancell-battery-pack/.
  69. [19] Subsea technologies li-ion standard powerpack, http://subctech.eu/liion_batteries/li-ion_powerpacks/.
  70. [24] Ethem Mutlu Sözer and Milica Stojanovic. Reconfigurable acoustic modem for underwater sensor networks. In Proceedings of the 1st ACM International Workshop on Underwater Networks, pages 101--104, 2006.
  71. [28] Aquatec Group. Aquatec aquamodem 1000 features, http://www.aquatecgroup.com/images/datasheets/aquamodem1000.pdf.
  72. [29] DSPComm. Dspcomm devices features, http://www.dspcomm.com/docs/Aquacomm_Information.PDF.
  73. [30] Desert Star. Desert star systems sam-1 features, http://desertstar.com/product/sam-1/.
  74. [31] EvoLogics. Evologics acoustic modems features, http://www.evologics.de/en/products/acoustics/index.html.
  75. [33] Features of acoustic modems teledyne benthos, http://www.f-e-t.com/images/uploads/Teledyne_Benthos_ATM-885_Modem_UDB-9000_Deck_Unit_with_Hydrophone.pdf.
  76. [34] TriTech. Tritech micron modem features, http://www.tritech.co.uk/product/micron-data-modem.
  77. [35] Sonardyne. ucomm underwater acoustic modem features, http://www.sonardyne.com/images/stories/datasheets/Sonardyne_8260_uCOMM.pdf.
  78. [36] Am-ofdm-s features, http://static1.squarespace.com/static/53f382fae4b05ea0cfc56833/t/54075f44e4b0f45128a7a5a0/1409769284704/AM-OFDM-S1.pdf.
  79. [37] Mats 3g 12 khz features, http://www.sercel.com/products/Lists/ProductSpecification/Mats3G_specifications_Sercel_SP.pdf.
  80. [38] Gpm 3000 acoustic modem features, http://www2.l-3com.com/oceania//pdfs/datasheets/GPM%20300%20Acoustic%20Modem%20Spec%20Sheet%20Rev%201%206.pdf.
  81. [39] Hannes Grobe. Oct. 2013. https://commons.wikimedia.org/ w/ index.php?curid=29515479.
  82. [42] Dario Pompili, Tommaso Melodia, and Ian F. Akyildiz. Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks. In Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, MobiCom '06, pages 298--309, 2006.
  83. [44] Taiwan central weather bureau, http://www.cwb.gov.tw/.
  84. [45] Amir Darehshoorzadeh, Mohammed Almulla, Azzedine Boukerche, and Sonny Chaiwala. On the number of candidates in opportunistic routing for multi-hop wireless networks. In Proceedings of the 11th ACM International Symposium on Mobility Management and Wireless Access, MobiWac '13, pages 9--16, 2013.
  85. [46] K. Zeng, W. Lou, J. Yang, and D. R. I. Brown. On geographic collaborative forwarding in wireless ad hoc and sensor networks. In International Conference on Wireless Algorithms, Systems and Applications, WASA Aug. 2007.
  86. [47] Peng Xie, Jun-Hong Cui, and Li Lao. VBF: Vector-Based Forwarding Protocol for Underwater Sensor Networks. In NETWORKING'06: Proceedings of the 5th international IFIP-TC6 networking conference on AdHoc and sensor networks, wireless networks, next generation internet, pages 1612--1621, 2006.
  87. [51] Y. Noh, U. Lee, S. Lee, P. Wang, L. F. M. Vieira, J. H. Cui, M. Gerla, and K. Kim. Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1):333--347, Jan 2016.
  88. [54] Nianmin Yao, Zheng Peng, Michael Zuba, and J. H. Cui. Improving aloha via backoff tuning in underwater sensor networks. In 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM), pages 1038--1043, Aug 2011.
  89. [57] Affan A. Syed, Wei Ye, and John Heidemann. T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks. In INFOCOM'08: 27th IEEE International Conference on Computer Communications, pages 231 --235, April 2008.
  90. [67] M. Hayajneh, I. Khalil, and Y. Gadallah. An ofdma-based mac protocol for underwater acoustic wireless sensor networks. In Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing, IWCMC '09,, pages 810--814, June 2009.
  91. [73] Nam-Yeol Yun, Yung-Pyo Kim, S. Muminov, Jin-Young Lee, Soo-Young Shin, and Soo-Hyun Park. Sync mac protocol to control underwater vehicle based on underwater acoustic communication. In 2011 IFIP 9th International Conference on Embedded and Ubiquitous Computing (EUC), pages 452--456, Oct 2011.
  92. [74] T. H. Nguyen, S. Y. Shin, and S. H. Park. Efficiency reservation mac protocol for underwater acoustic sensor networks. In Fourth International Conference on Networked Computing and Advanced Information Management, 2008. NCM '08. volume 1, pages 365--370, Sept 2008.
  93. [77] J. P. Kim, J. W. Lee, Y. S. Jang, K. Son, and H. S. Cho. A cdma-based mac protocol in tree-topology for underwater acoustic sensor networks. In International Conference on Advanced Information Networking and Applications Workshops, 2009. WAINA '09., pages 1166--1171, May 2009.
  94. [78] G. Fan, H. Chen, L. Xie, and K. Wang. An improved cdma-based mac protocol for underwater acoustic wireless sensor networks. In 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2011, pages 1--4, 2011.
  95. [82] Jiang M., Guo Z., Hong F., Ma Y., Luo H. OceanSense: A Practical Wireless Sensor Network on the Surface of the Sea. Proceedings of the IEEE International Conference on Pervasive Computing and Communications; Galveston, TX, USA. 9–13 March 2009; pp. 1–5.
  96. [83] Ian F. Akyildiz Dario Pompili, Tommaso Melodia. Routing Algorithms for Delay-insensitive and Delay-sensitive Applications in Underwater Sensor Networks. In MobiCom'06: Proceedings of the 12th ACM annual international conference on Mobile computing and networking, pages 298--309, 2006.
  97. [84] Chih-Cheng Hsu, Kuang-Fu Lai, Cheng-Fu Chou, and K. Ching-Ju Lin. Stmac:Spatial-temporal mac scheduling for underwater sensor networks. In INFOCOM' 09: 28th IEEE International Conference on Computer Communications, pages 1827--1835, April 2009.
  98. [91] Yibo Zhu, Zaihan Jiang, Zheng Peng, M. Zuba, Jun-Hong Cui, and Huifang Chen. Toward practical mac design for underwater acoustic networks. In INFOCOM'13: 32th IEEE International Conference on Computer Communications, pages 683--691, April 2013.
  99. [92] M. Zuba, Zaihan Jiang, T.C. Yang, Yishan Su, and Jun-Hong Cui. An advanced channel framework for improved underwater acoustic network simulations. In Oceans - San Diego, 2013, pages 1--8, Sept 2013.
  100. [95] Xiaobing Wu, Guihai Chen, and Jinming Chen. Energy-Efficient and Topology-Aware Routing for Underwater Sensor Networks. In ICCCN'10: Proceedings of 19th International Conference on Computer Communications and Networks, pages 1--6, 2010.
  101. [96] AF Harris and M. Zorzi. On the Design of Energy-efficient Routing Protocols in Underwater Networks. In SECON'07: 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pages 80-- 90, 2007.
  102. [99] Uichin Lee, P. Wang, Y. Noh, FLM Vieira, M. Gerla, and J.-H. Cui. Pressure Routing for Underwater Sensor Networks. In INFOCOM'10: 29th IEEE International Conference on Computer Communications, pages 1--9, March 2010.
  103. [100] Albert F. Harris, III, and Michele Zorzi. Modeling the Underwater Acoustic Channel in NS2. In ValueTools'07: Proceedings of the 2nd international conference on Performance evaluation methodologies and toolsnetworks, page 18, 2007.