题名

玉山箭竹在不同光環境下葉片形態與生理特性的比較

并列篇名

The comparisons of leaf morphological and physiological traits of Yushania niitakayamensis growing under different light environments

DOI

10.6342/NTU201702736

作者

吳昆松

关键词

玉山箭竹 ; 葉片特徵 ; 表型可塑性 ; 遺傳分化 ; 紡錘細胞 ; 種子萌芽及小苗生長 ; Yushania niitakayamensis ; leaf traits ; phenotypic plasticity ; genetic differentiation ; fusoid cell ; seed germination and seedling growth

期刊名称

臺灣大學生態學與演化生物學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

高文媛

内容语文

繁體中文

中文摘要

玉山箭竹 (Yushania niitakayamensis) 是多年生、禾本科竹亞科植物。前人研究及野外觀察發現:玉山箭竹可在開闊地形成草原 (植株高度< 2 m) 或在冷鐵杉林下生長 (植株高度> 2 m)。本研究探討:一、生長在不同生育地的玉山箭竹,除了植株高度外,其葉片形態、解剖構造及光合作用特徵是否有差異,二、上述特徵差異是否和其適應不同光環境有關;三、造成這些差異的原因是表型可塑性或生長在不同環境的族群已具有遺傳變異;並初步測量玉山箭竹其種子發芽和小苗生長。 比較生長在合歡山草原和林下的玉山箭竹,發現不論在哪一個季節,兩族群其葉長/寬比、葉片面積、氣孔密度、葉厚、單位乾重葉綠素含量均有顯著差異,這些差異會影響葉片光線吸收、散熱、水分散失及光合作用;觀察葉片切片發現林下植株葉肉的紡錘細胞 (特化的葉肉細胞) 細胞間隙較草原植株多。將草原與林下的玉山箭竹移植,種植於全光照及遮陰處理下1個月及8個月後,發現同一族群在兩種光度處理下,具有不同的葉片形質及氣體交換特徵,且紡錘細胞間隙的出現與生長光度有關,顯示玉山箭竹具有表型可塑性,且生理特徵對於光環境改變的反應速度比形態特徵快;不同生育地來源植株在相同光環境下,大部分的葉片特徵沒有顯著差異,然而有一些特徵,例如葉長/寬比、光飽和淨光合作用速率及光使用效率差異仍然存在,且葉厚、單位面積氮含量及水分使用效率等特徵的表型可塑性程度也不同,顯示不同生育地的族群在葉片特徵上已開始有遺傳分化的情形。 播種經過篩選且去除稃片的玉山箭竹種子,發現其發芽時間並不一致,可能有休眠期,在播種後第35天開始發芽,累積到第187天,發芽率達67.5%。發芽後的小苗,在全光照及遮陰處理下生長6個月後,遮陰處理植株其葉長、葉寬、葉面積及第二節間長顯著大於全光照處理植株,植株高度則沒有顯著差異。

英文摘要

Yushania niitakayamensis (Bambusoideae; Poaceae), a perennial bamboo species, grows in full sunlight forming meadows or dominates the forest understory. In this study, I aimed to answer following questions. (1) In addition to plant heights, are there differences in leaf morphological, anatomical and photosynthetic traits between Y. niitakayamensis populations? (2) What are the effects of the aforementioned differences on Y. niitakayamensis growing in two habitats with different light regimes? (3) Are these differences caused by phenotypic plasticity or genetic variation? I also investigated seed germination and seedling growth of Y. niitakayamensis. Significant differences in leaf length/width ratio, leaf area, stomatal density, leaf thickness, and chlorophyll content per unit mass were found between plants growing in meadow and in forest understory at He-huan mountains. Plants growing in forest understory had more fusoid cells (specialized mesophyll) intercellular space than plants growing in meadow. These differences would result in differences in leaf light absorptance, heat dissipation, water-use efficiency, and photosynthetic performance between the two populations. Plants from both habitats were transplanted and grown under two light treatments (full sun and 70 % shading) for eight months. Y. niitakayamensis expressed plastic phenotypes in leaf morphological, anatomical and photosynthetic traits in response to contrasting light environments. The adjustments in leaf physiological traits were faster than morphological traits in response to different light regimes. The occurrence of fusoid cell intercellular space is associated with growth light regimes. However, most of the aforementioned differences in leaf traits disappeared when plants from both habitats grown under the same light regime. Nevertheless, plants from different habitats showed differences in some leaf traits (e.g., leaf length/width ratio, light-saturated net photosynthetic rate and apparent quantum yield) and the degree of phenotypic plasticity in leaf thickness, nitrogen content per unit area and water-use efficiency in response to different light regimes indicating some genetic differentiation between the two populations. The seeds, after palea and lemma being removed, of Y. niitakayamensis were not germinated synchronously indicating seed dormancy. Totally about 70 % of seeds were germinated, 187 days after sowing. The germinated seedlings were then grown under two light treatments (full sun and 70 % shading). Significant differences in leaf length, width, area, and the length of second internode, but not in plant height, were found between seedlings grown in different light environments for six months.

主题分类 生命科學院 > 生態學與演化生物學研究所
生物農學 > 生物科學
参考文献
  1. 林維治 (1974) 竹花形態之研究,臺灣省林業試驗所報告第248號,117頁。
    連結:
  2. 陳致仁 (2003) 玉山箭竹親緣地理學探討,國立臺灣師範大學生物研究所 碩士論文。
    連結:
  3. 廖敏君 (2004) 玉山箭竹繁殖生物學之探討,國立中興大學森林學系碩士班 碩士論文。
    連結:
  4. Adatia, M. H., & Besford, R. T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58, 343-351.
    連結:
  5. Agata, W., Hakoyama, S., & Kawamitsu, Y. (1985). Influence of light intensity, temperature and humidity on photosynthesis and transpiration of Sasa nipponica and Arundinaria pygmaea. The Botanical Magazine, Tokyo, 98, 125-135.
    連結:
  6. Balaguer, L., Martinez-Ferri, E., Valladares, F., Pérez-Corona, M. E., Baquedano, F. J., Castillo, F. J., & Manrique, E. (2001). Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology, 15, 124-135.
    連結:
  7. Björkman, O., & Holmgren, P. (1963). Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiologia Plantarum, 16, 889-914.
    連結:
  8. Boardman, N. K. (1977). Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 28, 355-377.
    連結:
  9. Bochenek, G. M., & Fällström, I. (2016). The effect of diurnal light intensity distribution on plant productivity in a controlled environment. Acta Horticulturae, 1134, 155-162.
    連結:
  10. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. In E. W. Caspari & J. M. Thoday (Eds.), Advances in Genetics (Vol. Volume 13, pp. 115-155): Academic Press.
    連結:
  11. Brandis, D. (1906). V. Remarks on the structure of bamboo leaves. Transactions of the Linnean Society of London. 2nd Series: Botany, 7, 69-92.
    連結:
  12. Brugnoli, E., Hubick, K. T., von Caemmerer, S., Wong, S. C., & Farquhar, G. D. (1988). Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology, 88, 1418-1424.
    連結:
  13. Callaghan, T. V., & Lewis, M. C. (1971). The growth of Phleum alpinum L. in contrasting habitats at a sub-antarctic station. New Phytologist, 70, 1143-1154.
    連結:
  14. Cen, Y.-P., & Sage, R. F. (2005). The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiology, 139, 979-990.
    連結:
  15. Cirtain, M. C., Franklin, S. B., & Pezeshki, S. R. (2009). Effect of light intensity on Arundinaria gigantea growth and physiology. Castanea, 74, 236-246.
    連結:
  16. Clough, J. M., Alberte, R. S., & Teeri, J. A. (1979). Photosynthetic adaptation of Solanum dulcamara L. to sun and shade environments: II. physiological characterization of phenotypic response to environment. Plant Physiology, 64, 25-30.
    連結:
  17. DeLucia, E. H., Nelson, K., Vogelmann, T. C., & Smith, W. K. (1996). Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, Cell & Environment, 19, 159-170.
    連結:
  18. Dudley, S. A., & Schmitt, J. (1995). Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Functional Ecology, 9, 655-666.
    連結:
  19. Embaye, K., Christersson, L., Ledin, S., & Weih, M. (2003). Bamboo as bioresource in Ethiopia: management strategy to improve seedling performance (Oxytenanthera abyssinica). Bioresource Technology, 88, 33-39.
    連結:
  20. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91, 11-17.
    連結:
  21. Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
    連結:
  22. Farquhar, G. D., O'Leary, M. H., & Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121-137.
    連結:
  23. Foyer, C., Furbank, R., Harbinson, J., & Horton, P. (1990). The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynthesis Research, 25, 83-100.
    連結:
  24. Franceschi, V. R., & Giaquinta, R. T. (1983a). The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation I. Ultrastructure and histochemistry during vegetative development. Planta, 157, 411-421.
    連結:
  25. Franceschi, V. R., & Giaquinta, R. T. (1983b). The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation II. Structural, metabolic and compartmental changes during reproductive growth. Planta, 157, 422-431.
    連結:
  26. Franceschi, V. R., & Giaquinta, R. T. (1983c). Specialized cellular arrangements in legume leaves in relation to assimilate transport and compartmentation: comparison of the paraveinal mesophyll. Planta, 159, 415-422.
    連結:
  27. Galen, C., Shore, J. S., & Deyoe, H. (1991). Ecotypic divergence in alpine Polemonium viscosum: genetic structure, quantitative variation, and local adaptation. Evolution, 45, 1218-1228.
    連結:
  28. Gates, D. M. (1968). Transpiration and leaf temperature. Annual Review of Plant Physiology, 19, 211-238.
    連結:
  29. Gay, A. P., & Hurd, R. G. (1975). The influence of light on stomatal density in the tomato. New Phytologist, 75, 37-46.
    連結:
  30. Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990, 87-92.
    連結:
  31. Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92.
    連結:
  32. Grace, J., Fasehun, F. E., & Dixon, M. (1980). Boundary layer conductance of the leaves of some tropical timber trees. Plant, Cell & Environment, 3, 443-450.
    連結:
  33. Guerreiro, C., de Agrasar, Z. E. R., & Rodríguez, M. F. (2013). A contribution to the identification of vegetative Andean woody bamboos in southernmost America using leaf anatomy. The Journal of the Torrey Botanical Society, 140, 259-268.
    連結:
  34. Hikosaka, K., & Terashima, I. (1995). A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant, Cell & Environment, 18, 605-618.
    連結:
  35. Hsiao, J.-Y., & Rieseberg, L. H. (1994). Population genetic structure of Yushania niitakayamensis (Bambusoideae, Poaceae) in Taiwan. Molecular Ecology, 3, 201-208.
    連結:
  36. Hsiao, J.-Y., Wang, B.-S., & Rieseberg, L. H. (1996). Microgeographic allozyme variation in Yushan cane (Yushania niitakayamensis; Poaceae). Plant Species Biology, 11, 207-212.
    連結:
  37. Huang, D., Wu, L., Chen, J. R., & Dong, L. (2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49, 611-618.
    連結:
  38. Janzen, D. H. (1976). Why bamboos wait so long to flower. Annual Review of Ecology and Systematics, 7, 347-391.
    連結:
  39. Kao, W.-Y., & Forseth, I. N. (1992). Dirunal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant, Cell & Environment, 15, 703-710.
    連結:
  40. Karabourniotis, G., Bornman, J. F., & Nikolopoulos, D. (2000). A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant, Cell & Environment, 23, 423-430.
    連結:
  41. Keng, P. C. (1957). One new genus and two new species of chinese bamboos. Acta Phytotaxonomica Sinica, 6, 355-360.
    連結:
  42. Kenzo, T., Ichie, T., Watanabe, Y., & Hiromi, T. (2007). Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest. American Journal of Botany, 94, 764-775.
    連結:
  43. de Kroon, H., Huber, H., Stuefer, J. F., & van Groenendael, J. M. (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166, 73-82.
    連結:
  44. Kurepin, L. V., Pharis, R. P., Neal Emery, R. J., Reid, D. M., & Chinnappa, C. C. (2015). Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin. Plant Physiology and Biochemistry, 94, 174-180.
    連結:
  45. Lawson, T., & Morison, J. (2006). Visualising patterns of CO2 diffusion in leaves. New Phytologist, 169, 641-643.
    連結:
  46. Lei, T. T., & Koike, T. (1998). Functional leaf phenotypes for shaded and open environments of a dominant dwarf bamboo (Sasa senanensis) in northern Japan. International Journal of Plant Sciences, 159, 812-820.
    連結:
  47. Lei, T. T., Tabuchi, R., Kitao, M., & Koike, T. (1996). Functional relationship between chlorophyll content and leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiologia Plantarum, 96, 411-418.
    連結:
  48. Lin, W.-C. (2000). Subfamily 6. Bambusoideae. In T.-C. Huang (Ed.), Flora of Taiwan, Vol. 5. 2nd ed. (pp. 589-654). Taipei, Taiwan: Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.
    連結:
  49. Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18.
    連結:
  50. Makino, A., Mae, T., & Ohira, K. (1983). Photosynthesis and ribulose 1,5-bisphosphate carboxylase in rice leaves: changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiology, 73, 1002-1007.
    連結:
  51. Makino, A., Mae, T., & Ohira, K. (1988). Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta, 174, 30-38.
    連結:
  52. March, R. H., & Clark, L. G. (2011). Sun-shade variation in bamboo (Poaceae: Bambusoideae) leaves. Telopea, 13, 93-104.
    連結:
  53. Martin, R. E., Asner, G. P., & Sack, L. (2007). Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia, 151, 387-400.
    連結:
  54. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51, 659-668.
    連結:
  55. Metcalfe, C. R. (1956). Some thoughts on the structure of bamboo leaves. The Botanical Magazine, Tokyo, 69, 391-400.
    連結:
  56. Metcalfe, C. R. (1960). Anatomy of the Monocotyledons I. Gramineae. New York, USA: Oxford At The Clarendon Press.
    連結:
  57. Morales, F., Abadía, A., Abadía, J., Montserrat, G., & Gil-Pelegrín, E. (2002). Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees, 16, 504-510.
    連結:
  58. Motomura, H., Fujii, T., & Suzuki, M. (2000). Distribution of silicified cells in the leaf blades of Pleioblastus chino (Franchet et Savatier) Makino (Bambusoideae). Annals of Botany, 85, 751-757.
    連結:
  59. Motomura, H., Fujii, T., & Suzuki, M. (2006). Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Annals of Botany, 97, 513-519.
    連結:
  60. Niinemets, Ü., Kull, O., & Tenhunen, J. D. (1999). Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. International Journal of Plant Sciences, 160, 837-848.
    連結:
  61. Nilsson, P., Fagerström, T., Tuomi, J., & Åström, M. (1994). Does seed dormancy benefit the mother plant by reducing sib competition? Evolutionary Ecology, 8, 422-430.
    連結:
  62. O'Leary, M. H. (1988). Carbon isotopes in photosynthesis. BioScience, 38, 328-336.
    連結:
  63. Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Żytkowiak, R., Reich, P. B., & Karolewski, P. (1998). Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 12, 573-590.
    連結:
  64. Page, V. M. (1947). Leaf anatomy of Streptochaeta and the relation of this genus to the bamboos. Bulletin of the Torrey Botanical Club, 74, 232-239.
    連結:
  65. Parkhurst, D. F., & Loucks, O. L. (1972). Optimal leaf size in relation to environment. Journal of Ecology, 60, 505-537.
    連結:
  66. Pearcy, R. W., Muraoka, H., & Valladares, F. (2005). Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytologist, 166, 791-800.
    連結:
  67. Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: The Johns Hopkins University Press.
    連結:
  68. Poorter, H., & Evans, J. R. (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
    連結:
  69. Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
    連結:
  70. Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
    連結:
  71. Poorter, L., Kwant, R., Hernandez, R., Medina, E., & Werger, M. J. (2000). Leaf optical properties in Venezuelan cloud forest trees. Tree Physiology, 20, 519-526.
    連結:
  72. Puglielli, G., Varone, L., Gratani, L., & Catoni, R. (2017). Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica, 55, 31-40.
    連結:
  73. Reich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W., & Buschena, C. (1998). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 12, 327-338.
    連結:
  74. Rice, K. J., Black, R. A., Radamaker, G., & Evans, R. D. (1992). Photosynthesis, growth, and biomass allocation in habitat ecotypes of cheatgrass (Bromus tectorum). Functional Ecology, 6, 32-40.
    連結:
  75. Roach, T., & Krieger-Liszkay, A. (2014). Regulation of photosynthetic electron transport and photoinhibition. Current Protein & Peptide Science, 15, 351-362.
    連結:
  76. Rozendaal, D. M. A., Hurtado, V. H., & Poorter, L. (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
    連結:
  77. Runcie, J. W., & Durako, M. J. (2004). Among-shoot variability and leaf-specific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. Aquatic Botany, 80, 209-220.
    連結:
  78. Shirley, H. L. (1929). The influence of light intensity and light quality upon the growth of plants. American Journal of Botany, 16, 354-390.
    連結:
  79. Si, C.-C., Dai, Z.-C., Lin, Y., Qi, S.-S., Huang, P., Miao, S.-L., & Du, D.-L. (2014). Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island. Biological Invasions, 16, 2323-2337.
    連結:
  80. Soderstrom, T. R. (1988). Aulonemia fulgor (Poaceae: Bambusoideae), a new species from Mexico. Brittonia, 40, 22-31.
    連結:
  81. Sultan, S. E. (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44, 363-383.
    連結:
  82. Terashima, I. (1992). Anatomy of non-uniform leaf photosynthesis. Photosynthesis Research, 31, 195-212.
    連結:
  83. Terashima, I., Miyazawa, S.-I., & Hanba, Y. T. (2001). Why are sun leaves thicker than shade leaves? - Consideration based on analyses of CO2 diffusion in the Leaf. Journal of Plant Research, 114, 93-105.
    連結:
  84. Tholen, D., Boom, C., & Zhu, X.-G. (2012). Opinion: Prospects for improving photosynthesis by altering leaf anatomy. Plant Science, 197, 92-101.
    連結:
  85. Thornber, J. P. (1975). Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annual Review of Plant Physiology, 26, 127-158.
    連結:
  86. Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936.
    連結:
  87. Vega, A. S., Castro, M. A., & Guerreiro, C. (2016). Ontogeny of fusoid cells in Guadua species (Poaceae, Bambusoideae, Bambuseae): evidence for transdifferentiation and possible functions. Flora, 222, 13-19.
    連結:
  88. Wang, S., Zhang, H., Lin, S., Hse, C., & Ding, Y. (2016). Anatomical characteristics of fusoid cells and vascular bundles in Fargesia yunnanensis leaves. Journal of Forestry Research, 27, 1237-1247.
    連結:
  89. Wintermans, J. F. G. M., & de Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta, 109, 448-453.
    連結:
  90. Xiao, Y., Tholen, D., & Zhu, X.-G. (2016). The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. Journal of Experimental Botany, 67, 6021-6035.
    連結:
  91. Xu, F., Guo, W., Xu, W., Wei, Y., & Wang, R. (2009). Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19, 1789-1798.
    連結:
  92. Yang, S.-J., Sun, M., Zhang, Y.-J., Cochard, H., & Cao, K.-F. (2014). Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments. Plant Ecology, 215, 97-109.
    連結:
  93. Zhang, S.-B., Hu, H., Xu, K., Li, Z.-R., & Yang, Y.-P. (2007). Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. Journal of Plant Physiology, 164, 611-620.
    連結:
  94. Zsögön, A., Negrini, A. C., Peres, L. E., Nguyen, H. T., & Ball, M. C. (2015). A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytologist, 205, 618-626.
    連結:
  95. 王冰心 (1994) 合歡山區玉山箭竹族群之類黃素變異及遺傳結構,國立中興大學植物學系 碩士論文。
  96. 王亞男、詹明勳、宋炯輝、張國楨、莊俊逸、賀立行 (2000) 塔塔加地區台灣雲杉、台灣鐵杉林下及玉山箭竹微生育地環境之研究 (一),中華林學季刊第33卷,321至329頁。
  97. 王忠魁 (1974) 臺灣高山草原之由來及其演進與亞極羣落之商榷,中研院生物研究中心,生物與環境專題研討會講稿集,1至16頁。
  98. 呂錦明 (2001) 竹林之培育及經營管理,行政院農業委員會林業試驗所,204頁。
  99. 李聲銘 (1997) 應用逢機擴大多型性核酸技術研究玉山箭竹族群之遺傳變異,國立中興大學植物學研究所 碩士論文。
  100. 林笈克、黃江綸、黃健陸、許秋容、楊國禎 (2012) 臺灣中部合歡東峰玉山箭竹草地與臺灣冷杉林地被植群之研究,國家公園學報第22號,21至33頁。
  101. 林維治 (1976) 台灣竹亞科植物之分類 (續),臺灣省林業試驗所試驗報告第271號,1至75頁。
  102. 徐國士、林則桐、陳玉峰、呂勝由 (1984) 太魯閣國家公園植物生態資源調查報告,內政部營建署,150頁。
  103. 郭寶章、張明洵 (1984) 玉山箭竹之生態及防除,中華林學季刊第17卷,33至51頁。
  104. 陳玉峰 (1989) 玉山箭竹暨高地草原歷來研究之檢討,玉山生物學報第6卷,1至26頁。
  105. 陳玉峰、林俊義、王忠魁 (1992) 臺灣高地植群生態研究系列 (II) -玉山箭竹之生長與體型變異,玉山生物學報第9卷,117至143頁。
  106. 陳明義 (1986) 竹類之開花,現代育林第2卷,67至76頁。
  107. 劉業經 (1962) 臺灣中高海拔水土保持植物之調查,農林學報第11卷,161至192頁。
  108. 劉業經、呂福原、歐辰雄、賴國祥 (1984) 臺灣高山箭竹草生地之植物演替與競爭機制,中華林學季刊第17卷,1至32頁。
  109. 蔡淑華 (1975) 植物組織切片技術綱要,茂昌圖書有限公司,72頁。
  110. 賴裕芳 (1998) 塔塔加地區不同生育地玉山箭竹DNA多形性之研究,國立臺灣大學森林學研究所 碩士論文。
  111. 館岡亞緒 (1957) イ礻科の系統分類に関する雑記 (9),植物研究雜誌第32卷,43至49頁。
  112. Björkman, O. (1981). Responses to different quantum flux densities. In O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), Physiological Plant Ecology I: Responses to the Physical Environment (pp. 57-107). Berlin, Heidelberg: Springer Berlin Heidelberg.
  113. Clark, L. G. (1991). The function of fusoid cells in bamboos: An hypothesis. American Journal of Botany, 78 (supplement), 22. [Abstract].
  114. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507-559.
  115. Jarvis, P., & Morison, J. (1981). The control of transpiration and photosynthesis by the stomata. In P. Jarvis & T. Mansfield (Eds.), Stomatal Physiology (pp. 247-279): Cambridge University Press.
  116. Joshi, J., Schmid, B., Caldeira, M. C., Dimitrakopoulos, P. G., Good, J., Harris, R., Hector, A., Huss-Danell, K., Jumpponen, A., Minns, A., Mulder, C. P. H., Pereira, J. S., Prinz, A., Scherer-Lorenzen, M., Siamantziouras, A. S. D., Terry, A. C., Troumbis, A. Y., & Lawton, J. H. (2001). Local adaptation enhances performance of common plant species. Ecology Letters, 4, 536-544.
  117. Karelstschicoff, S. (1868). Über die faltenfoermigen Verdickungen in der Zellen einiger Gramineen. Bulletin de la Société impériale des naturalistes de Moscou, 41, 180-190.
  118. Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Photosynthesis. In Plant Physiological Ecology (pp. 11-99). New York: Springer New York.
  119. Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., & Hsieh, C.-F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698-719.
  120. McClure, F. A. (1966). The Bamboos, A Fresh Perspective: Harvard University Press.
  121. Ogren, W. L., Salvucci, M. E., Portis, A. R., & Leegood, R. C. (1986). The regulation of Rubisco activity [and discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 313, 337-346.
  122. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., & Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
  123. Pearcy, R. W. (1999). Responses of plants to heterogeneous light environments. In F. I. Pugnaire & F. Valladares (Eds.), Handbook of Functional Plant Ecology (pp. 269-314). New York, USA: Marcal Dekker, Inc.
  124. Rice, K. J., & Dyer, A. R. (2001). Seed aging, delayed germination and reduced competitive ability in Bromus tectorum. Plant Ecology, 155, 237-243.
  125. Ritchie, G. A. (2006). Chlorophyll fluorescence: what is it and what do the numbers mean? USDA Forest Service Proceedings RMRS-P-43, 34-43.
  126. Shanmughavel, P., & Francis, K. (2001). Physiology of Bamboo. India: Scientific Publishers (India).
  127. Tang, Y. (1997). Light. In M. N. V. Prasad (Ed.), Plant Ecophysiology (pp. 3-40). New York, USA: John Wiley & Sons, Inc.