题名

藉由操控奈米物質的陣列排列與異質結構之新穎特性

并列篇名

Novel Physical Properties based on Manipulation of Patterned Nanomaterials and Heterostructures

DOI

10.6342/NTU201800428

作者

鄭景丞

关键词

金奈米柱 ; 光偵測器 ; 氣體偵測器 ; 石墨烯 ; gold nanorod ; photo sensor ; gas sensor

期刊名称

國立臺灣大學物理學系學位論文

卷期/出版年月

2018年

学位类别

博士

导师

陳永芳

内容语文

英文

中文摘要

在本論文中,首先我們報導了一種簡單的方法,利用有方向性的空間侷限,去控制奈米金屬柱自組裝整齊排列於基板上。其次,我們設計製作了石墨烯、氧化鋅、矽基板組成的三位能階接面結構元件,展示了一個自我驅動的光偵測器,此光偵測器具有高敏感度、極快的反應與光波長400奈米至1000奈米的寬頻寬偵測範圍。最後,我們整合了石墨烯、半導體與額外的特殊費米能階篩子結構,製作了一個奈米組合氣體偵測器,此偵測器具有極高的敏感度跟極快的反應時間。 1.在沒有結構的基板上,控制金屬自主裝方向 利用具有柵狀週期結構的彈性印模,我們展示了一種簡單的方法去控制達成某種預定的奈米金屬柱自主裝方向在沒有結構的基板上。非常有趣的是,經由選擇不同親水性的基板,自主裝排列一制性可以被控制操作垂直或是平行於柵狀週期結構。 2.由石磨烯、氧化鋅與矽基板組成的三接面自驅動、廣頻寬光偵測器 我們設計製作了石墨烯、氧化鋅、矽基板組成的三金屬接面結構元件,展示了一個自我驅動的光偵測器,此光偵測器具有高敏感度、極快的反應與光波長400奈米至1000奈米的寬偵測範圍。石墨烯在此扮演一種透明、有效率的導電光點子蒐集層,基於其良好的費米能階調整性。氧化鋅在此做為抗反射層,用來捕捉光子增加光的吸收效率。此外,加入一層氧化鋅在石墨烯與矽基板中間,會使石墨烯/氧化鋅、氧化鋅/矽基板的接面產生內建的接面電場,此接面電場極大量的增加了由光電效應產生電子電洞對的分離機率。進而,此元件的靈敏度與反應速度都明顯的增加。相信我們以這種挑選適合的原件設計、適合的材料物理能階結構、適合的光學參數方法去整合達成高效率的自驅動光偵測器手段,可以整合到其他種材料元件上,以製作更特殊的實質光電元件應用。 3.利用巨大的蕭基接面費米能階偏移與設計的費米能篩模組製作超快、超敏感氣體偵測器 氣體偵測器在很多領域都有重要的應用,像是智能偵測有毒氣體系統等。即使這些應用的重要性已經引起人們的注意,然後在氣體偵測,得反應速度仍然非常慢。為了解決這個問題,我們在這邊嘗試整合了石墨烯、半導體與一個特殊設計的費米能篩模組製作了一個超快、超敏感氣體偵測器。這個設計的費米能篩模組有適合得位能結構可以阻擋經由氣體分子沾附元件表面產生的分離載子復合回原本底層的半導體材料。我們發現氣體偵測的敏感度可以低至百萬分一之得程度,而且反應響應時間,也低至60微秒,在過去的石墨烯為基礎的氣體偵測元件文獻中,這兩個極佳的特性是前所未見的。因此,我們的成果非常有用,而且對於目前高效能、高應用性的氣體偵測器發展幫助很大。

英文摘要

In this thesis, we have reported a simple methodology to control the orientation of AuNRs assembly into directional aligned film structure under confinement in the beginning. Then a self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In the end, we provide a seminal attempt with the integration of graphene, semiconductor, and an additional sieve layer forming a nanocomposite gas sensor with ultrahigh sensitivity and ultrafast time response. 1.Controllable orientation of assembled gold nanorods on unstructured substrates A facile methodology to control the orientation of assembled Au nanorods with a preferential direction on unstructured substrates has been demonstrated by the assistance of an elastomer grating stamp. Quite surprisingly, by choosing the hydrophobicity of the substrate, the aligned orientation can be manipulated to be perpendicular or parallel to the grating direction. 2.Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions A self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In this device, graphene serves as a transparent electrode as well as an efficient collection layer for photogenerated carriers due to its excellent tunability of Fermi energy. The ZnO layer acts as an antireflection layer to trap the incident light and enhance the light absorption. Furthermore, the insertion of the ZnO layer in between graphene and Si layers can create build-in electric field at both graphene/ZnO and ZnO/Si interfaces, which can greatly enhance the charge separation of photogenerated electron and hole pairs. As a result, the sensitivity and response time can be significantly improved. It is believed that our methodology for achieving a high-performance self-powered photodetector based on an appropriate design of band alignment and optical parameters can be implemented to many other material systems, which can be used to generate unique optoelectronic devices for practical applications. 3.Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation Gas sensors play an important role in numerous fields, covering a wide range of applications, including intelligent systems and detection of harmful and toxic gases. Even though they have attracted much attention, the response time on the order of seconds to minutes is still very slow. To circumvent the existing problems, here, we provide a seminal attempt with the integration of graphene, semiconductor, and an addition sieve layer forming a nanocomposite gas sensor with ultrahigh sensitivity and ultrafast response. The designed sieve layer has a suitable band structure that can serve as a blocking layer to prevent transfer of the charges induced by adsorbed gas molecules into the underlying semiconductor layer. We found that the sensitivity can be reduced to the parts per million level, and the ultrafast response of around 60 ms is unprecedented compared with published graphene-based gas sensors. The achieved high performance can be interpreted well by the large change of the Fermi level of graphene due to its inherent nature of the low density of states and blocking of the sieve layer to prevent charge transfer from graphene to the underlying semiconductor layer. Accordingly, our work is very useful and timely for the development of gas sensors with high performance for practical applications.

主题分类 基礎與應用科學 > 物理
理學院 > 物理學系
参考文献
  1. 1.5 References
    連結:
  2. 3. C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev, Matter. Sci. 30, 545 (2000).
    連結:
  3. 5. Y. An, A. Behnam, E. Pop and A. Ural, Appl. Phys. Lett. 102, 013110 (2013)
    連結:
  4. 8. Johnson, J. L.; Behnam, A.; Pearton, S.; Ural, A. Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks. Adv. Mater. 2010, 22 (43), 4877-4880.
    連結:
  5. 9. Wu, W.; Liu, Z.; Jauregui, L. A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y. P.; Pei, S.-S. Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Application in Hydrogen Sensing. Sens. Actuator B-Chem. 2010, 150 (1), 296-300.
    連結:
  6. 14. Zhang, J.; Zhao, C.; Hu, P. A.; Fu, Y. Q.; Wang, Z.; Cao, W.; Yang, B.; Placido, F. A UV Light Enhanced TiO2/Graphene Device for Oxygen Sensing at Room Temperature. R. Soc. Chem. Adv. 2013, 3 (44), 22185.
    連結:
  7. 15. Chen, C.; Hung, S.; Yang, M.; Yeh, C.; Wu, C.; Chi, G.; Ren, F.; Pearton, S. Oxygen Sensors Made by Monolayer Graphene under Room Temperature. Appl. Phys. Lett. 2011, 99 (24), 243502.
    連結:
  8. 16. Kim, J.; Oh, S. D.; Kim, J. H.; Shin, D. H.; Kim, S.; Choi, S.-H. Graphene/Si-Nanowire Heterostructure Molecular Sensors. Sci. Rep. 2014, 4.
    連結:
  9. 18. Zhu, L.; Jia, Y.; Gai, G.; Ji, X.; Luo, J.; Yao, Y. Ambipolarity of Large-Area Pt-Functionalized Graphene Observed in H2 Sensing. Sens. Actuator B-Chem. 2014, 190, 134-140.
    連結:
  10. 1. E. Yablonovith, Phys. Rev. Lett. 58, 2059 (1987).
    連結:
  11. 2. L. Liu, Z. Han, S. He, Opt. Express 13, 17 (2005).
    連結:
  12. 3. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    連結:
  13. 4. C. Kittel, Introduction to Solid State Physics, 7th ed. (Hoboken, NJ: John Wiley & Sons, Inc. 1996).
    連結:
  14. 6. K. M. Leung and Y. F. Liu, Phys. Rev. B 41, 10188 (1990).
    連結:
  15. 8. S. Guo and S. Albin, Opt. Express 11, 167 (2003).
    連結:
  16. 9. K. S. Yee, IEEE Trans. Antennas Progag. 14, 302 (1966).
    連結:
  17. 10. G. Mur, IEEE Trans. Electromagn. Compat. 23, 377 (1981).
    連結:
  18. 11. B. C. Gupta, C. H. Kuo and Z. Ye, Phys. Rev. E 69, 066615 (2004).
    連結:
  19. 12. D. Felbacq, G. Tayeb, and D. Maystre, J. Opt. Soc. Am. A 11, 2526 (1994).
    連結:
  20. 14. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
    連結:
  21. 15. A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
    連結:
  22. 16. S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
    連結:
  23. 18. G. C. Papavassiliou, Prog. Solid State Chem. 12, 185 (1980).
    連結:
  24. 21. A. K. Geim, Science 2009, 324, 1530.
    連結:
  25. 22. C. Mattevi, M. J. Chhowalla, Mater. Chem. 2011, 21, 3324.
    連結:
  26. 26. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
    連結:
  27. 28. A. H. C. Neto, Rev. Mod. Phys. 2009, 81 , 109.
    連結:
  28. 35. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, J. Cryst. Growth 2004, 260, 166.
    連結:
  29. 36. K. Maeda, M. Sato, I. Niikura, Semicond. Sci. Technol. 2005, 20, S49.
    連結:
  30. 39. S. Deiter, D. Forster, F. Bertram, J. Cryst. Growth 2004, 272, 800.
    連結:
  31. 42. A. Janotti, C. G. Van De. Walle, REPORTS Prog. Phys. 2009, 72, 126501.
    連結:
  32. 43. A. Mang, Solid State Commun. 1995, 94, 251.
    連結:
  33. 44. B. Telephone, D. G. Thomas, M. Hill, J. Phys. Chem. Solids 1960, 15, 86.
    連結:
  34. 45. D. C. Reynolds, D. C. Look, B. Jogai, Phys. Rev. B 1999, 60, 2340.
    連結:
  35. 47. A. Umar, B. Kim, J. Kim,; Z. L. Wang, J. Phys. Condens. MATTER 2004, 16, R829.
    連結:
  36. 5. M. K. Chaudhury, Biosens. Bioelectron. 10, 785 (1995).
    連結:
  37. 7. S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
    連結:
  38. 8. I. Gorelikov and N. Matsuura, Nano Lett. 8, 369 (2008).
    連結:
  39. 1. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).
    連結:
  40. 2. T. Tsutsui, Nature (London) 420, 752 (2002).
    連結:
  41. 5. W. C. Chan and S. Nie, Science 281, 2016 (1998).
    連結:
  42. 14. E. Katz and I. Willner, Angew. Chem. Int. Ed. 43, 6042 (2004).
    連結:
  43. 17. I. Gorelikov and N. Matsuura, Nano Lett. 8, 369 (2008).
    連結:
  44. 3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007)
    連結:
  45. 5. D. R. Kauffman and A. Star, Analyst 135, 2790 (2010)
    連結:
  46. 7. E. W. Hill, A. Vijayaragahvan and K. Novoselov, IEEE Sensors J. 11, 3161 (2011)
    連結:
  47. 10. Q. He, S. Wu, Z. Yin and H. Zhang, Chem. Sci. 3, 1764 (2012)
    連結:
  48. 11. Y. Liu, X. Dong and P. Chen, Chem. Soc. Rev. 41, 2283 (2012)
    連結:
  49. 15. Q. Shao, G. Liu, D. Teweldebrhan, A. A. Balandin, S. Rumyantsev, M. S. Shur and D. Yan, IEEE Electron Device Lett. 30, 288 (2009)
    連結:
  50. 16. K. R. Ratinac, W. Yang, S. P. Ringer and F. Braet, Environ. Sci. Technol. 44, 1167 (2010)
    連結:
  51. 18. Y. An, A. Behnam, E. Pop and A. Ural, Appl. Phys. Lett. 102, 013110 (2013)
    連結:
  52. 22. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton and A. F. Hebard, Nano Lett. 12, 2745 (2012)
    連結:
  53. 25. K. Yang, C. Xu, L. Huang, L. Zou and H. Wang, Nanotechnology 22, 405401 (2011)
    連結:
  54. 28. P. Xu, Q. Tang and Z. Zhou, Nanotechnology 24, 305401 (2013)
    連結:
  55. 31. S. K. Lee and J. Y. Son, Appl. Phys. Lett. 100, 132109 (2012)
    連結:
  56. 33. C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang and Y. F. Chen, Adv. Funct. Mater. 23, 4043 (2013)
    連結:
  57. 36. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater. 20, 561 (2010)
    連結:
  58. 1. Li, C.; Bai, H.; Shi, G. Conducting Polymer Nanomaterials: Electrosynthesis and Applications. Chem. Soc. Rev. 2009, 38 (8), 2397-2409.
    連結:
  59. 2. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2011, 112 (2), 1105-1125.
    連結:
  60. 3. Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous Materials as Gas Sensors. Chem. Soc. Rev. 2013, 42 (9), 4036-4053.
    連結:
  61. 4. Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A 2013, 1 (35), 10078-10091.
    連結:
  62. 6. Zee, F.; Judy, J. W. Micromachined Polymer-Based Chemical Gas Sensor Array. Sens. Actuator B-Chem. 2001, 72 (2), 120-128.
    連結:
  63. 7. Itagaki, Y.; Deki, K.; Nakashima, S.-I.; Sadaoka, Y. Toxic Gas Detection Using Porphyrin Dispersed Polymer Composites. Sens. Actuator B-Chem. 2005, 108 (1), 393-397.
    連結:
  64. 8. Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7 (3), 267-307.
    連結:
  65. 9. Mohammadi, M.; Fray, D. Development of Nanocrystalline TiO2–Er2O3 and TiO 2–Ta2O5 Thin Film Gas Sensors: Controlling the Physical and Sensing Properties. Sens. Actuator B-Chem. 2009, 141 (1), 76-84.
    連結:
  66. 10. Chen, A.; Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev 2010, 110 (6), 3767-3804.
    連結:
  67. 11. Lee, J. S.; Kwon, O. S.; Park, S. J.; Park, E. Y.; You, S. A.; Yoon, H.; Jang, J. Fabrication of Ultrafine Metal-Oxide-Decorated Carbon Nanofibers for Dmmp Sensor Application. ACS Nano 2011, 5 (10), 7992-8001.
    連結:
  68. 12. Li, C.; Shi, G. Three-Dimensional Graphene Architectures. Nanoscale 2012, 4 (18), 5549-5563.
    連結:
  69. 13. Wang, D.; Chen, A.; Jen, A. K.-Y. Reducing Cross-Sensitivity of TiO2-(B) Nanowires to Humidity Using Ultraviolet Illumination for Trace Explosive Detection. Phys. Chem. Chem. Phys. 2013, 15 (14), 5017-5021.
    連結:
  70. 14. Yang, G.; Lee, C.; Kim, J.; Ren, F.; Pearton, S. J. Flexible Graphene-Based Chemical Sensors on Paper Substrates. Phys. Chem. Chem. Phys. 2013, 15 (6), 1798-1801.
    連結:
  71. 15. Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197-200.
    連結:
  72. 16. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438 (7065), 201-204.
    連結:
  73. 17. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183-191.
    連結:
  74. 18. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906-3924.
    連結:
  75. 19. Kauffman, D. R.; Star, A. Graphene Versus Carbon Nanotubes for Chemical Sensor and Fuel Cell Applications. Analyst 2010, 135 (11), 2790-2797.
    連結:
  76. 20. Wu, Y.; Yu, T.; Shen, Z. Two-Dimensional Carbon Nanostructures: Fundamental Properties, Synthesis, Characterization, and Potential Applications. J. Appl. Phys. 2010, 108 (7), 071301.
    連結:
  77. 22. Potyrailo, R. A.; Surman, C.; Nagraj, N.; Burns, A. Materials and Transducers toward Selective Wireless Gas Sensing. Chem. Rev. 2011, 111 (11), 7315-7354.
    連結:
  78. 23. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent Advances in Graphene-Based Biosensors. Biosens. Bioelectron. 2011, 26 (12), 4637-4648.
    連結:
  79. 24. He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronic Sensors. Chem. Sci. 2012, 3 (6), 1764-1772.
    連結:
  80. 25. Liu, Y.; Dong, X.; Chen, P. Biological and Chemical Sensors Based on Graphene Materials. Chem. Soc. Rev. 2012, 41 (6), 2283-2307.
    連結:
  81. 26. Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Graphene for Electrochemical Sensing and Biosensing. Trends Anal. Chem. 2010, 29 (9), 954-965.
    連結:
  82. 27. Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon 2010, 48 (8), 2127-2150.
    連結:
  83. 28. Abergel, D.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of Graphene: A Theoretical Perspective. Adv. Phys. 2010, 59 (4), 261-482.
    連結:
  84. 29. Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X.; Ferralis, N.; Ko, H.; Chueh, Y.-L.; Zhang, Y.; Maboudian, R. Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene. Appl. Phys. Lett. 2010, 96 (6), 063110.
    連結:
  85. 31. Lin, Y.-M.; Avouris, P. Strong Suppression of Electrical Noise in Bilayer Graphene Nanodevices. Nano Lett. 2008, 8 (8), 2119-2125.
    連結:
  86. 32. Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A.; Rumyantsev, S.; Shur, M. S.; Yan, D. Flicker Noise in Bilayer Graphene Transistors. IEEE Electron Device Lett. 2009, 30 (3), 288-290.
    連結:
  87. 33. Ratinac, K. R.; Yang, W.; Ringer, S. P.; Braet, F. Toward Ubiquitous Environmental Gas Sensors¬¬-Capitalizing on the Promise of Graphene. Environ. Sci. Technol. 2010, 44 (4), 1167-1176.
    連結:
  88. 34. Johnson, J. L.; Behnam, A.; Pearton, S.; Ural, A. Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks. Adv. Mater. 2010, 22 (43), 4877-4880.
    連結:
  89. 35. Wu, W.; Liu, Z.; Jauregui, L. A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y. P.; Pei, S.-S. Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Application in Hydrogen Sensing. Sens. Actuator B-Chem. 2010, 150 (1), 296-300.
    連結:
  90. 37. Hodgkinson, J.; Tatam, R. P. Optical Gas Sensing: A Review. Meas. Sci. Technol. 2012, 24 (1), 012004.
    連結:
  91. 38. Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sens. Actuator B-Chem. 1999, 54 (1), 3-15.
    連結:
  92. 40. Wang, X.-d.; Wolfbeis, O. S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43 (10), 3666-3761.
    連結:
  93. 41. Eisele, I.; Doll, T.; Burgmair, M. Low Power Gas Detection with Fet Sensors. Sens. Actuator B-Chem. 2001, 78 (1), 19-25.
    連結:
  94. 42. Siyama, T.; Kato, A. A New Detector for Gaseous Components Using Semiconductor Thin Film. Anal. Chem 1962, 34 (11), 1502-1503.
    連結:
  95. 43. Zhang, J.; Zhao, C.; Hu, P. A.; Fu, Y. Q.; Wang, Z.; Cao, W.; Yang, B.; Placido, F. A UV Light Enhanced TiO2/Graphene Device for Oxygen Sensing at Room Temperature. R. Soc. Chem. Adv. 2013, 3 (44), 22185.
    連結:
  96. 44. Chen, C.; Hung, S.; Yang, M.; Yeh, C.; Wu, C.; Chi, G.; Ren, F.; Pearton, S. Oxygen Sensors Made by Monolayer Graphene under Room Temperature. Appl. Phys. Lett. 2011, 99 (24), 243502.
    連結:
  97. 45. Kim, J.; Oh, S. D.; Kim, J. H.; Shin, D. H.; Kim, S.; Choi, S.-H. Graphene/Si-Nanowire Heterostructure Molecular Sensors. Sci. Rep. 2014, 4.
    連結:
  98. 47. Zhu, L.; Jia, Y.; Gai, G.; Ji, X.; Luo, J.; Yao, Y. Ambipolarity of Large-Area Pt-Functionalized Graphene Observed in H2 Sensing. Sens. Actuator B-Chem. 2014, 190, 134-140.
    連結:
  99. 48. Qiao, Q.; Shan, C.-X.; Zheng, J.; Zhu, H.; Yu, S.-F.; Li, B.-H.; Jia, Y.; Shen, D.-Z. Surface Plasmon Enhanced Electrically Pumped Random Lasers. Nanoscale 2013, 5 (2), 513-517.
    連結:
  100. 49. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3 (2), 301-306.
    連結:
  101. 1.5 References
    連結:
  102. 3. C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev, Matter. Sci. 30, 545 (2000).
    連結:
  103. 5. Y. An, A. Behnam, E. Pop and A. Ural, Appl. Phys. Lett. 102, 013110 (2013)
    連結:
  104. 8. Johnson, J. L.; Behnam, A.; Pearton, S.; Ural, A. Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks. Adv. Mater. 2010, 22 (43), 4877-4880.
    連結:
  105. 9. Wu, W.; Liu, Z.; Jauregui, L. A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y. P.; Pei, S.-S. Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Application in Hydrogen Sensing. Sens. Actuator B-Chem. 2010, 150 (1), 296-300.
    連結:
  106. 14. Zhang, J.; Zhao, C.; Hu, P. A.; Fu, Y. Q.; Wang, Z.; Cao, W.; Yang, B.; Placido, F. A UV Light Enhanced TiO2/Graphene Device for Oxygen Sensing at Room Temperature. R. Soc. Chem. Adv. 2013, 3 (44), 22185.
    連結:
  107. 15. Chen, C.; Hung, S.; Yang, M.; Yeh, C.; Wu, C.; Chi, G.; Ren, F.; Pearton, S. Oxygen Sensors Made by Monolayer Graphene under Room Temperature. Appl. Phys. Lett. 2011, 99 (24), 243502.
    連結:
  108. 16. Kim, J.; Oh, S. D.; Kim, J. H.; Shin, D. H.; Kim, S.; Choi, S.-H. Graphene/Si-Nanowire Heterostructure Molecular Sensors. Sci. Rep. 2014, 4.
    連結:
  109. 18. Zhu, L.; Jia, Y.; Gai, G.; Ji, X.; Luo, J.; Yao, Y. Ambipolarity of Large-Area Pt-Functionalized Graphene Observed in H2 Sensing. Sens. Actuator B-Chem. 2014, 190, 134-140.
    連結:
  110. 1. E. Yablonovith, Phys. Rev. Lett. 58, 2059 (1987).
    連結:
  111. 2. L. Liu, Z. Han, S. He, Opt. Express 13, 17 (2005).
    連結:
  112. 3. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    連結:
  113. 4. C. Kittel, Introduction to Solid State Physics, 7th ed. (Hoboken, NJ: John Wiley & Sons, Inc. 1996).
    連結:
  114. 6. K. M. Leung and Y. F. Liu, Phys. Rev. B 41, 10188 (1990).
    連結:
  115. 8. S. Guo and S. Albin, Opt. Express 11, 167 (2003).
    連結:
  116. 9. K. S. Yee, IEEE Trans. Antennas Progag. 14, 302 (1966).
    連結:
  117. 10. G. Mur, IEEE Trans. Electromagn. Compat. 23, 377 (1981).
    連結:
  118. 11. B. C. Gupta, C. H. Kuo and Z. Ye, Phys. Rev. E 69, 066615 (2004).
    連結:
  119. 12. D. Felbacq, G. Tayeb, and D. Maystre, J. Opt. Soc. Am. A 11, 2526 (1994).
    連結:
  120. 14. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
    連結:
  121. 15. A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
    連結:
  122. 16. S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
    連結:
  123. 18. G. C. Papavassiliou, Prog. Solid State Chem. 12, 185 (1980).
    連結:
  124. 21. A. K. Geim, Science 2009, 324, 1530.
    連結:
  125. 22. C. Mattevi, M. J. Chhowalla, Mater. Chem. 2011, 21, 3324.
    連結:
  126. 26. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
    連結:
  127. 28. A. H. C. Neto, Rev. Mod. Phys. 2009, 81 , 109.
    連結:
  128. 35. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, J. Cryst. Growth 2004, 260, 166.
    連結:
  129. 36. K. Maeda, M. Sato, I. Niikura, Semicond. Sci. Technol. 2005, 20, S49.
    連結:
  130. 39. S. Deiter, D. Forster, F. Bertram, J. Cryst. Growth 2004, 272, 800.
    連結:
  131. 42. A. Janotti, C. G. Van De. Walle, REPORTS Prog. Phys. 2009, 72, 126501.
    連結:
  132. 43. A. Mang, Solid State Commun. 1995, 94, 251.
    連結:
  133. 44. B. Telephone, D. G. Thomas, M. Hill, J. Phys. Chem. Solids 1960, 15, 86.
    連結:
  134. 45. D. C. Reynolds, D. C. Look, B. Jogai, Phys. Rev. B 1999, 60, 2340.
    連結:
  135. 47. A. Umar, B. Kim, J. Kim,; Z. L. Wang, J. Phys. Condens. MATTER 2004, 16, R829.
    連結:
  136. 5. M. K. Chaudhury, Biosens. Bioelectron. 10, 785 (1995).
    連結:
  137. 7. S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
    連結:
  138. 8. I. Gorelikov and N. Matsuura, Nano Lett. 8, 369 (2008).
    連結:
  139. 1. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).
    連結:
  140. 2. T. Tsutsui, Nature (London) 420, 752 (2002).
    連結:
  141. 5. W. C. Chan and S. Nie, Science 281, 2016 (1998).
    連結:
  142. 14. E. Katz and I. Willner, Angew. Chem. Int. Ed. 43, 6042 (2004).
    連結:
  143. 17. I. Gorelikov and N. Matsuura, Nano Lett. 8, 369 (2008).
    連結:
  144. 3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007)
    連結:
  145. 5. D. R. Kauffman and A. Star, Analyst 135, 2790 (2010)
    連結:
  146. 7. E. W. Hill, A. Vijayaragahvan and K. Novoselov, IEEE Sensors J. 11, 3161 (2011)
    連結:
  147. 10. Q. He, S. Wu, Z. Yin and H. Zhang, Chem. Sci. 3, 1764 (2012)
    連結:
  148. 11. Y. Liu, X. Dong and P. Chen, Chem. Soc. Rev. 41, 2283 (2012)
    連結:
  149. 15. Q. Shao, G. Liu, D. Teweldebrhan, A. A. Balandin, S. Rumyantsev, M. S. Shur and D. Yan, IEEE Electron Device Lett. 30, 288 (2009)
    連結:
  150. 16. K. R. Ratinac, W. Yang, S. P. Ringer and F. Braet, Environ. Sci. Technol. 44, 1167 (2010)
    連結:
  151. 18. Y. An, A. Behnam, E. Pop and A. Ural, Appl. Phys. Lett. 102, 013110 (2013)
    連結:
  152. 22. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton and A. F. Hebard, Nano Lett. 12, 2745 (2012)
    連結:
  153. 25. K. Yang, C. Xu, L. Huang, L. Zou and H. Wang, Nanotechnology 22, 405401 (2011)
    連結:
  154. 28. P. Xu, Q. Tang and Z. Zhou, Nanotechnology 24, 305401 (2013)
    連結:
  155. 31. S. K. Lee and J. Y. Son, Appl. Phys. Lett. 100, 132109 (2012)
    連結:
  156. 33. C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang and Y. F. Chen, Adv. Funct. Mater. 23, 4043 (2013)
    連結:
  157. 36. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater. 20, 561 (2010)
    連結:
  158. 1. Li, C.; Bai, H.; Shi, G. Conducting Polymer Nanomaterials: Electrosynthesis and Applications. Chem. Soc. Rev. 2009, 38 (8), 2397-2409.
    連結:
  159. 2. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2011, 112 (2), 1105-1125.
    連結:
  160. 3. Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous Materials as Gas Sensors. Chem. Soc. Rev. 2013, 42 (9), 4036-4053.
    連結:
  161. 4. Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A 2013, 1 (35), 10078-10091.
    連結:
  162. 6. Zee, F.; Judy, J. W. Micromachined Polymer-Based Chemical Gas Sensor Array. Sens. Actuator B-Chem. 2001, 72 (2), 120-128.
    連結:
  163. 7. Itagaki, Y.; Deki, K.; Nakashima, S.-I.; Sadaoka, Y. Toxic Gas Detection Using Porphyrin Dispersed Polymer Composites. Sens. Actuator B-Chem. 2005, 108 (1), 393-397.
    連結:
  164. 8. Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7 (3), 267-307.
    連結:
  165. 9. Mohammadi, M.; Fray, D. Development of Nanocrystalline TiO2–Er2O3 and TiO 2–Ta2O5 Thin Film Gas Sensors: Controlling the Physical and Sensing Properties. Sens. Actuator B-Chem. 2009, 141 (1), 76-84.
    連結:
  166. 10. Chen, A.; Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev 2010, 110 (6), 3767-3804.
    連結:
  167. 11. Lee, J. S.; Kwon, O. S.; Park, S. J.; Park, E. Y.; You, S. A.; Yoon, H.; Jang, J. Fabrication of Ultrafine Metal-Oxide-Decorated Carbon Nanofibers for Dmmp Sensor Application. ACS Nano 2011, 5 (10), 7992-8001.
    連結:
  168. 12. Li, C.; Shi, G. Three-Dimensional Graphene Architectures. Nanoscale 2012, 4 (18), 5549-5563.
    連結:
  169. 13. Wang, D.; Chen, A.; Jen, A. K.-Y. Reducing Cross-Sensitivity of TiO2-(B) Nanowires to Humidity Using Ultraviolet Illumination for Trace Explosive Detection. Phys. Chem. Chem. Phys. 2013, 15 (14), 5017-5021.
    連結:
  170. 14. Yang, G.; Lee, C.; Kim, J.; Ren, F.; Pearton, S. J. Flexible Graphene-Based Chemical Sensors on Paper Substrates. Phys. Chem. Chem. Phys. 2013, 15 (6), 1798-1801.
    連結:
  171. 15. Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197-200.
    連結:
  172. 16. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438 (7065), 201-204.
    連結:
  173. 17. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183-191.
    連結:
  174. 18. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906-3924.
    連結:
  175. 19. Kauffman, D. R.; Star, A. Graphene Versus Carbon Nanotubes for Chemical Sensor and Fuel Cell Applications. Analyst 2010, 135 (11), 2790-2797.
    連結:
  176. 20. Wu, Y.; Yu, T.; Shen, Z. Two-Dimensional Carbon Nanostructures: Fundamental Properties, Synthesis, Characterization, and Potential Applications. J. Appl. Phys. 2010, 108 (7), 071301.
    連結:
  177. 22. Potyrailo, R. A.; Surman, C.; Nagraj, N.; Burns, A. Materials and Transducers toward Selective Wireless Gas Sensing. Chem. Rev. 2011, 111 (11), 7315-7354.
    連結:
  178. 23. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent Advances in Graphene-Based Biosensors. Biosens. Bioelectron. 2011, 26 (12), 4637-4648.
    連結:
  179. 24. He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronic Sensors. Chem. Sci. 2012, 3 (6), 1764-1772.
    連結:
  180. 25. Liu, Y.; Dong, X.; Chen, P. Biological and Chemical Sensors Based on Graphene Materials. Chem. Soc. Rev. 2012, 41 (6), 2283-2307.
    連結:
  181. 26. Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Graphene for Electrochemical Sensing and Biosensing. Trends Anal. Chem. 2010, 29 (9), 954-965.
    連結:
  182. 27. Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon 2010, 48 (8), 2127-2150.
    連結:
  183. 28. Abergel, D.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of Graphene: A Theoretical Perspective. Adv. Phys. 2010, 59 (4), 261-482.
    連結:
  184. 29. Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X.; Ferralis, N.; Ko, H.; Chueh, Y.-L.; Zhang, Y.; Maboudian, R. Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene. Appl. Phys. Lett. 2010, 96 (6), 063110.
    連結:
  185. 31. Lin, Y.-M.; Avouris, P. Strong Suppression of Electrical Noise in Bilayer Graphene Nanodevices. Nano Lett. 2008, 8 (8), 2119-2125.
    連結:
  186. 32. Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A.; Rumyantsev, S.; Shur, M. S.; Yan, D. Flicker Noise in Bilayer Graphene Transistors. IEEE Electron Device Lett. 2009, 30 (3), 288-290.
    連結:
  187. 33. Ratinac, K. R.; Yang, W.; Ringer, S. P.; Braet, F. Toward Ubiquitous Environmental Gas Sensors¬¬-Capitalizing on the Promise of Graphene. Environ. Sci. Technol. 2010, 44 (4), 1167-1176.
    連結:
  188. 34. Johnson, J. L.; Behnam, A.; Pearton, S.; Ural, A. Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks. Adv. Mater. 2010, 22 (43), 4877-4880.
    連結:
  189. 35. Wu, W.; Liu, Z.; Jauregui, L. A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y. P.; Pei, S.-S. Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Application in Hydrogen Sensing. Sens. Actuator B-Chem. 2010, 150 (1), 296-300.
    連結:
  190. 37. Hodgkinson, J.; Tatam, R. P. Optical Gas Sensing: A Review. Meas. Sci. Technol. 2012, 24 (1), 012004.
    連結:
  191. 38. Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sens. Actuator B-Chem. 1999, 54 (1), 3-15.
    連結:
  192. 40. Wang, X.-d.; Wolfbeis, O. S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43 (10), 3666-3761.
    連結:
  193. 41. Eisele, I.; Doll, T.; Burgmair, M. Low Power Gas Detection with Fet Sensors. Sens. Actuator B-Chem. 2001, 78 (1), 19-25.
    連結:
  194. 42. Siyama, T.; Kato, A. A New Detector for Gaseous Components Using Semiconductor Thin Film. Anal. Chem 1962, 34 (11), 1502-1503.
    連結:
  195. 43. Zhang, J.; Zhao, C.; Hu, P. A.; Fu, Y. Q.; Wang, Z.; Cao, W.; Yang, B.; Placido, F. A UV Light Enhanced TiO2/Graphene Device for Oxygen Sensing at Room Temperature. R. Soc. Chem. Adv. 2013, 3 (44), 22185.
    連結:
  196. 44. Chen, C.; Hung, S.; Yang, M.; Yeh, C.; Wu, C.; Chi, G.; Ren, F.; Pearton, S. Oxygen Sensors Made by Monolayer Graphene under Room Temperature. Appl. Phys. Lett. 2011, 99 (24), 243502.
    連結:
  197. 45. Kim, J.; Oh, S. D.; Kim, J. H.; Shin, D. H.; Kim, S.; Choi, S.-H. Graphene/Si-Nanowire Heterostructure Molecular Sensors. Sci. Rep. 2014, 4.
    連結:
  198. 47. Zhu, L.; Jia, Y.; Gai, G.; Ji, X.; Luo, J.; Yao, Y. Ambipolarity of Large-Area Pt-Functionalized Graphene Observed in H2 Sensing. Sens. Actuator B-Chem. 2014, 190, 134-140.
    連結:
  199. 48. Qiao, Q.; Shan, C.-X.; Zheng, J.; Zhu, H.; Yu, S.-F.; Li, B.-H.; Jia, Y.; Shen, D.-Z. Surface Plasmon Enhanced Electrically Pumped Random Lasers. Nanoscale 2013, 5 (2), 513-517.
    連結:
  200. 49. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3 (2), 301-306.
    連結:
  201. 1. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994).
  202. 2. M.G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  203. 4. X. An, F. Liu, Y. J. Jung and S. Kar, Nano Lett. 13, 909 (2013)
  204. 6. 2L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie and F. X. Liang, ACS Appl. Mater. Interfaces 5, 9362 (2013)
  205. 7. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  206. 10. Chu, B. H.; Lo, C.; Nicolosi, J.; Chang, C.; Chen, V.; Strupinski, W.; Pearton, S.; Ren, F. Hydrogen Detection Using Platinum Coated Graphene Grown on Sic. Sens. Actuator B-Chem. 2011, 157 (2), 500-503.
  207. 11. P. J. Jorge, P. S. Isabel, L. M. Luis M. and M. Paul, Coord. Chem. Rev. 249, 1870 (2005).
  208. 12. Y. Dirix, Adv. Mater. 11, 223(1999).
  209. 13. M. F. Bhopal, D. W. Lee, A. R. and S. H. Lee J. Mater. Chem. C, 2017, 5, 10701(2017)
  210. 17. Pak, Y.; Kim, S.-M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces 2014, 6 (15), 13293-13298.
  211. 19. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  212. 2.4 References
  213. 5. J. D. Jannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton, NJ: Princeton Univ. Press, 1995).
  214. 7. J. G. Rivas, C. Schotsch, P. H. Bolivar and H. Kurz, Phys. Rev. B 68, 201306 (2003).
  215. 13. S. A. Maier, Plasmonics : fundamentals and applications, 1st. ed. (Springer, New York, 2007).
  216. 17. R. Gans, Ann. Physik 47, 270 (1915).
  217. 19. J. M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Science 2004, 306, 666.
  218. 20. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
  219. 23. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 2008, 8, 2012.
  220. 24. E. Graphene, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. De. Heer, Science 2006, 312, 1191.
  221. 25. K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. Mcchesney, T. Ohta, S. A.Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
  222. 27. G. N. Dash, S. R. Pattanail, S. Behera, IEEE Electon Devices Soc. 2014, 2, 77.
  223. 29. M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-herrero, P. Jacquod, B. J. Leroy, Nat. Phys. 2012, 8, 382.
  224. 30. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V. Dubonos, Nature 2005, 438 , 197.
  225. 31. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 2.
  226. 32. J. K.Wassei, R. B. Kaner, Mater. Today 2010, 13, 52.
  227. 33. E. Industries, B. J. T. Blvd, Solid State Commun. 1998, 105, 399.
  228. 34. D. C. Reynolds, C. W. L. C. Look, J. E. Hoelscher, B. C. C. C. Nause, B. Nemeth, D. C. Reynolds, C. W. Litton, J. Appl. Phys. 2004, 95, 4802.
  229. 37. F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, V. Amendola, F. Quaranta, A. Valentini, F. F. L. Rizzi, G. Casamassima, J. Appl. Phys. 1993, 74, 244.
  230. 38. S. Ã. Heinze, A. Krtschil, J. Bla, T. Hempel, P. Veit, A. Dadgar, J. Christen, A. Krost, J. Cryst. Growth 2007, 308, 170.
  231. 40. T. Ã. Ive, C. G. Van De Walle, U. K. Mishra, S. P. Denbaars, J. S. Speck, J. Cryst. Growth 2008, 310, 3407.
  232. 41. T. Ive, T. Ben, A. Murai, H. Asamizu, U. Mishra, S. P. Denbaars, J. S. Speck, G. Zno, I. Zno, Phys. status solidi 2008, 5, 3091.
  233. 46. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoç, J. Appl. Phys. 2005, 98, 41301.
  234. 3.5 References
  235. 1. M. G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  236. 2. Younan Xia and George M. Whitesides, annurev. matsci. 28, 1, 153 (1998)
  237. 3. S. J. Clarson, J. A. Semlyen, Siloxane Polymers (Prentice Hall, Englewood Cliffs, NJ, 1993)
  238. 4. G. S. Ferguson,M.K. Chaudhury,H. A. Biebuyck,G. M. Whitesides, Macromolecules 26, 5870 (1993).
  239. 6. C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Phys. Chem. B 108, 10687 (2004).
  240. 9. J. Pérez-Juste, M. A. Correa-Duarte and L. M. Liz-Marzán, Appl. Surf. Sci. 226,137 (2004).
  241. 4.5 References
  242. 3. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature (London) 370, 354 (1994).
  243. 4. M. G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  244. 6. A. J. Nozik, Physica E (Amsterdam) 14, 115 (2002).
  245. 7. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, Nanotechnology 18, 025403 (2007).
  246. 8. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005).
  247. 9. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
  248. 10. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 100, 207404 (2008).
  249. 11. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, Nanotechnology 18, 415707 (2007).
  250. 12. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon and M. Artemyev, Nano Lett. 2, 1449 (2002).
  251. 13. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, J. Phys. Chem. B. 109, 13857 (2005).
  252. 15. W. H. Ni, X. S. Kou, Z. Yang and J. F. Wang, ACS Nano 2, 677 (2008).
  253. 16. C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Phys. Chem. B 108, 10687 (2004).
  254. 18. E. S. Shibu, B. Radha, P. K. Verma, P. Bhyrappa, G. U. Kulkarni, S. K. Pal and T. Pradeep, ACS Appl. Mater. Interfaces 1, 2199 (2009).
  255. 19. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, J. Am. Chem. Soc. 127, 3115 (2005).
  256. 20. C. W. Chen, C. H. Wang, C. M. Wei, C. Y. Hsieh, Y.T. Chen, Y.F. Chen, C.W. Lai, C. L. Liu, C. C. Hsieh and P. T. Chou, J. Phys. Chem. C 114, 799 (2010).
  257. 21. Y. Ito, K. Matsuda and Y. Kanemitsu, Phys. Rev. B. 75, 033309 (2007).
  258. 22. C. W. Chen, C. H. Wang, C. M. Wei and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
  259. 5.5 References
  260. 1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, Nature 438, 201 (2005)
  261. 2. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005)
  262. 4. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010)
  263. 6. Y. Wu, T. Yu and Z. Shen, J. Appl. Phys. 108, 071301 (2010)
  264. 8. R. A. Potyrailo, C. Surman, N. Nagraj and A. Burns, Chem. Rev. 111, 7315 (2011)
  265. 9. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens. Bioelectron. 26, 4637 (2011)
  266. 12. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. L. Poh, Trends Anal. Chem. 29, 954 (2010)
  267. 13. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Grigorieva and A. Firsov, Science 306, 666 (2004)
  268. 14. Y. M. Lin and P. Avouris, Nano Lett. 8, 2119 (2008)
  269. 17. X. An, F. Liu, Y. J. Jung and S. Kar, Nano Lett. 13, 909 (2013)
  270. 19. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie and F. X. Liang, ACS Appl. Mater. Interfaces 5, 9362 (2013)
  271. 20. P. Lv, X. Zhang, X. Zhang, W. Deng and J. Jie, IEEE Electron Device Lett. 34, 1337 (2013)
  272. 21. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li and D. Wu, Adv. Mater. 22, 2743 (2010)
  273. 23. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung and K. Kim, Science 336, 1140 (2012)
  274. 24. H. Y. Kim, K. Lee, N. Mcevoy, C. Yim and G. S. Duesberg, Nano Lett. 13, 2182 (2013)
  275. 26. K. S. Shin, H. Jo, H. J. Shin, W. M. Choi, J. Y. Choi and S. W. Kim, J. Mater. Chem. 22, 13032 (2012)
  276. 27. S. Zhang, X. Zhang, F. Si, J. Dong, J. Wang, X. Liu, Z. Yin and H. Gao, Appl. Phys. Lett. 101, 121104 (2012)
  277. 29. Q. Xu, Z. Zhang, R. Hong, X. Chen, F. Zhang and Z. Wu, Mater. Lett. 105, 206 (2013)
  278. 30. W. Guo, M. Katz, C. Nelson, T. Heeg, D. Schlom, B. Liu, Y. Che and X. Pan, Appl. Phys. Lett. 94, 122107 (2009)
  279. 32. M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996)
  280. 34. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 1981) p.245.
  281. 35. X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen and T. Lin, Adv. Mater. 27, 6575 (2015)
  282. 37. E. Hecht, Optics (Addison-Wesley, Boston, 2002) p.428
  283. 6.5 References
  284. 5. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  285. 21. Hill, E. W.; Vijayaragahvan, A.; Novoselov, K. Graphene Sensors. IEEE Sensors J. 2011, 11 (12), 3161-3170.
  286. 30. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S. a.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
  287. 36. Chu, B. H.; Lo, C.; Nicolosi, J.; Chang, C.; Chen, V.; Strupinski, W.; Pearton, S.; Ren, F. Hydrogen Detection Using Platinum Coated Graphene Grown on Sic. Sens. Actuator B-Chem. 2011, 157 (2), 500-503.
  288. 39. Gregory, J.; Asai, K.; Kameda, M.; Liu, T.; Sullivan, J. A Review of Pressure-Sensitive Paint for High-Speed and Unsteady Aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2008, 222 (2), 249-290.
  289. 46. Pak, Y.; Kim, S.-M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces 2014, 6 (15), 13293-13298.
  290. 1. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994).
  291. 2. M.G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  292. 4. X. An, F. Liu, Y. J. Jung and S. Kar, Nano Lett. 13, 909 (2013)
  293. 6. 2L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie and F. X. Liang, ACS Appl. Mater. Interfaces 5, 9362 (2013)
  294. 7. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  295. 10. Chu, B. H.; Lo, C.; Nicolosi, J.; Chang, C.; Chen, V.; Strupinski, W.; Pearton, S.; Ren, F. Hydrogen Detection Using Platinum Coated Graphene Grown on Sic. Sens. Actuator B-Chem. 2011, 157 (2), 500-503.
  296. 11. P. J. Jorge, P. S. Isabel, L. M. Luis M. and M. Paul, Coord. Chem. Rev. 249, 1870 (2005).
  297. 12. Y. Dirix, Adv. Mater. 11, 223(1999).
  298. 13. M. F. Bhopal, D. W. Lee, A. R. and S. H. Lee J. Mater. Chem. C, 2017, 5, 10701(2017)
  299. 17. Pak, Y.; Kim, S.-M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces 2014, 6 (15), 13293-13298.
  300. 19. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  301. 2.4 References
  302. 5. J. D. Jannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton, NJ: Princeton Univ. Press, 1995).
  303. 7. J. G. Rivas, C. Schotsch, P. H. Bolivar and H. Kurz, Phys. Rev. B 68, 201306 (2003).
  304. 13. S. A. Maier, Plasmonics : fundamentals and applications, 1st. ed. (Springer, New York, 2007).
  305. 17. R. Gans, Ann. Physik 47, 270 (1915).
  306. 19. J. M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Science 2004, 306, 666.
  307. 20. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
  308. 23. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 2008, 8, 2012.
  309. 24. E. Graphene, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. De. Heer, Science 2006, 312, 1191.
  310. 25. K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. Mcchesney, T. Ohta, S. A.Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
  311. 27. G. N. Dash, S. R. Pattanail, S. Behera, IEEE Electon Devices Soc. 2014, 2, 77.
  312. 29. M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-herrero, P. Jacquod, B. J. Leroy, Nat. Phys. 2012, 8, 382.
  313. 30. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V. Dubonos, Nature 2005, 438 , 197.
  314. 31. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 2.
  315. 32. J. K.Wassei, R. B. Kaner, Mater. Today 2010, 13, 52.
  316. 33. E. Industries, B. J. T. Blvd, Solid State Commun. 1998, 105, 399.
  317. 34. D. C. Reynolds, C. W. L. C. Look, J. E. Hoelscher, B. C. C. C. Nause, B. Nemeth, D. C. Reynolds, C. W. Litton, J. Appl. Phys. 2004, 95, 4802.
  318. 37. F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, V. Amendola, F. Quaranta, A. Valentini, F. F. L. Rizzi, G. Casamassima, J. Appl. Phys. 1993, 74, 244.
  319. 38. S. Ã. Heinze, A. Krtschil, J. Bla, T. Hempel, P. Veit, A. Dadgar, J. Christen, A. Krost, J. Cryst. Growth 2007, 308, 170.
  320. 40. T. Ã. Ive, C. G. Van De Walle, U. K. Mishra, S. P. Denbaars, J. S. Speck, J. Cryst. Growth 2008, 310, 3407.
  321. 41. T. Ive, T. Ben, A. Murai, H. Asamizu, U. Mishra, S. P. Denbaars, J. S. Speck, G. Zno, I. Zno, Phys. status solidi 2008, 5, 3091.
  322. 46. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoç, J. Appl. Phys. 2005, 98, 41301.
  323. 3.5 References
  324. 1. M. G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  325. 2. Younan Xia and George M. Whitesides, annurev. matsci. 28, 1, 153 (1998)
  326. 3. S. J. Clarson, J. A. Semlyen, Siloxane Polymers (Prentice Hall, Englewood Cliffs, NJ, 1993)
  327. 4. G. S. Ferguson,M.K. Chaudhury,H. A. Biebuyck,G. M. Whitesides, Macromolecules 26, 5870 (1993).
  328. 6. C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Phys. Chem. B 108, 10687 (2004).
  329. 9. J. Pérez-Juste, M. A. Correa-Duarte and L. M. Liz-Marzán, Appl. Surf. Sci. 226,137 (2004).
  330. 4.5 References
  331. 3. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature (London) 370, 354 (1994).
  332. 4. M. G. Bruchez, S. P. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).
  333. 6. A. J. Nozik, Physica E (Amsterdam) 14, 115 (2002).
  334. 7. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, Nanotechnology 18, 025403 (2007).
  335. 8. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005).
  336. 9. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
  337. 10. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 100, 207404 (2008).
  338. 11. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, Nanotechnology 18, 415707 (2007).
  339. 12. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon and M. Artemyev, Nano Lett. 2, 1449 (2002).
  340. 13. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, J. Phys. Chem. B. 109, 13857 (2005).
  341. 15. W. H. Ni, X. S. Kou, Z. Yang and J. F. Wang, ACS Nano 2, 677 (2008).
  342. 16. C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Phys. Chem. B 108, 10687 (2004).
  343. 18. E. S. Shibu, B. Radha, P. K. Verma, P. Bhyrappa, G. U. Kulkarni, S. K. Pal and T. Pradeep, ACS Appl. Mater. Interfaces 1, 2199 (2009).
  344. 19. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, J. Am. Chem. Soc. 127, 3115 (2005).
  345. 20. C. W. Chen, C. H. Wang, C. M. Wei, C. Y. Hsieh, Y.T. Chen, Y.F. Chen, C.W. Lai, C. L. Liu, C. C. Hsieh and P. T. Chou, J. Phys. Chem. C 114, 799 (2010).
  346. 21. Y. Ito, K. Matsuda and Y. Kanemitsu, Phys. Rev. B. 75, 033309 (2007).
  347. 22. C. W. Chen, C. H. Wang, C. M. Wei and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
  348. 5.5 References
  349. 1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, Nature 438, 201 (2005)
  350. 2. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005)
  351. 4. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010)
  352. 6. Y. Wu, T. Yu and Z. Shen, J. Appl. Phys. 108, 071301 (2010)
  353. 8. R. A. Potyrailo, C. Surman, N. Nagraj and A. Burns, Chem. Rev. 111, 7315 (2011)
  354. 9. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens. Bioelectron. 26, 4637 (2011)
  355. 12. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. L. Poh, Trends Anal. Chem. 29, 954 (2010)
  356. 13. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Grigorieva and A. Firsov, Science 306, 666 (2004)
  357. 14. Y. M. Lin and P. Avouris, Nano Lett. 8, 2119 (2008)
  358. 17. X. An, F. Liu, Y. J. Jung and S. Kar, Nano Lett. 13, 909 (2013)
  359. 19. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie and F. X. Liang, ACS Appl. Mater. Interfaces 5, 9362 (2013)
  360. 20. P. Lv, X. Zhang, X. Zhang, W. Deng and J. Jie, IEEE Electron Device Lett. 34, 1337 (2013)
  361. 21. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li and D. Wu, Adv. Mater. 22, 2743 (2010)
  362. 23. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung and K. Kim, Science 336, 1140 (2012)
  363. 24. H. Y. Kim, K. Lee, N. Mcevoy, C. Yim and G. S. Duesberg, Nano Lett. 13, 2182 (2013)
  364. 26. K. S. Shin, H. Jo, H. J. Shin, W. M. Choi, J. Y. Choi and S. W. Kim, J. Mater. Chem. 22, 13032 (2012)
  365. 27. S. Zhang, X. Zhang, F. Si, J. Dong, J. Wang, X. Liu, Z. Yin and H. Gao, Appl. Phys. Lett. 101, 121104 (2012)
  366. 29. Q. Xu, Z. Zhang, R. Hong, X. Chen, F. Zhang and Z. Wu, Mater. Lett. 105, 206 (2013)
  367. 30. W. Guo, M. Katz, C. Nelson, T. Heeg, D. Schlom, B. Liu, Y. Che and X. Pan, Appl. Phys. Lett. 94, 122107 (2009)
  368. 32. M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996)
  369. 34. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 1981) p.245.
  370. 35. X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen and T. Lin, Adv. Mater. 27, 6575 (2015)
  371. 37. E. Hecht, Optics (Addison-Wesley, Boston, 2002) p.428
  372. 6.5 References
  373. 5. Varghese, S. S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuator B-Chem. 2015, 218, 160-183.
  374. 21. Hill, E. W.; Vijayaragahvan, A.; Novoselov, K. Graphene Sensors. IEEE Sensors J. 2011, 11 (12), 3161-3170.
  375. 30. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S. a.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
  376. 36. Chu, B. H.; Lo, C.; Nicolosi, J.; Chang, C.; Chen, V.; Strupinski, W.; Pearton, S.; Ren, F. Hydrogen Detection Using Platinum Coated Graphene Grown on Sic. Sens. Actuator B-Chem. 2011, 157 (2), 500-503.
  377. 39. Gregory, J.; Asai, K.; Kameda, M.; Liu, T.; Sullivan, J. A Review of Pressure-Sensitive Paint for High-Speed and Unsteady Aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2008, 222 (2), 249-290.
  378. 46. Pak, Y.; Kim, S.-M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces 2014, 6 (15), 13293-13298.