题名

利用回收矽晶粒子與木質纖維素製備碳矽複合材料應用於鋰離子電池負極之研究

并列篇名

Carbon-Silicon Composites Prepared from Recycled Silicon and Lignocellulose for Negative Electrodes of Li-ion Batteries

DOI

10.6342/NTU201701413

作者

郭晉榕

关键词

鋰離子電池 ; 鋰離子電池負極材料 ; 碳矽負極材料 ; 木質纖維素 ; 木質素 ; Lithium ion batteries ; Li-ion batteries anode ; C/Si composites anode ; lignocellulose ; lignin

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

顏溪成

内容语文

繁體中文

中文摘要

矽為新一代鋰離子電池負極材料的理想材料之一,因為矽具有非常高的比電容量與適當的工作電壓,極具成為鋰離子負極材料的潛力,但是矽基材在鋰嵌入與脫嵌時,會產生劇烈的體積變化,而體積驟然收縮會產生很大的機械應力使矽基材結構崩壞,最後導致電池的循環效能不佳。為了改善純矽基材所遇到的問題,本研究將使用熱處理程序將碳材導入,製備碳矽複合材料,改善純矽電極的循環特性。 有別於以往的研究,本研究使用從矽晶磚經鑽石線切削矽泥中所回收而來的次微米級矽粒子,搭配紙漿廠的副產物木質素與木質纖維素,進行碳矽複合材料的製備。兩種碳前驅物分別與回收矽粒子依重量比1:1進行超音波震盪混合程序,緊接著進行在600℃氬氣氣氛下進行燒結程序,由於不同種類的碳前驅物具有不同的型態,所以製備出具有不同結構的碳矽複合材料。在木質纖維素與矽的複材當中,碳化過後的木質纖維素可以作為材料的支撐體與增加導電性,而矽粒子會附著於其表面且彼此之間保有一定的空隙,這些空隙可以用來容納矽體積的變化,讓此結構具有相當出色的循環性能,其首圈去鋰化電容量(delithiation)為1165 mAh/g Si,經過51圈循環後,電容量還有970 mAh/g Si,電容量保留率高達83.4%。另一方面,在木質素與矽的複合材料當中,矽會包埋在木質素碳化完的基材中,而藉由不定型碳層的保護,可以有效減緩矽體積膨脹所產生的應力,進而抑制電容量的衰退現象。其電化學表現與純矽電極相比也相當優異,首圈去鋰化電容量為2286 mAh/g Si,且在300 mA/g循環51圈之後,還保有880 mAh/g Si。此項研究可以提供鋰離子電池負極材料的研究方向,一方面改善純矽電極的循環特性,另一方面可以減少廢棄物的產生與提升再生資源的附加價值,達成永續發展的循環型社會。

英文摘要

Silicon has the potential to replace the graphite as the anode material for Li-ion batteries due to its high specific capacity and appropriate working voltage. However, the dramatic volume change during the Li-ion insertion and extraction has caused the poor cyclic stability. To improve the cyclic stability of Si anode, we embedded Si into a carbon matrix to form a Si-C composites. In this study, we employed the silicon particles recovered from the silicon ingot slicing slurries and the biomass (lignin and lignocellulose), which are by-products of pulp industry, to fabricate negative electrodes for lithium ion battery. Lignin or lignocellulose would be well mixed with Si particles by magnetic stirring and ultrasonication and then undergo a pyrolysis process to form Si-C composites. Due to different carbonaceous precursors, the composites have different structures. The pyrolyzed lignocellulose formed an interconnected structure with Si particles, which provides extra space to accommodate Si volume variation. The composite electrode exhibits outstanding cycle performance for capacity retention up to 83.4% after 51 cycles at 300 mAh/g. On the other hand, the Si particles in lignin-Si composites are coated with a carbon layer, and the layer can not only suppress the volume change but also increase the contact electronic conductivity. Besides, the SEI layer on the carbon surface would be stable. It also showed excellent electrochemical performance with an initial charge capacity up to 2286 mAh/g and retaining 880 mAh/g after 51 cycles at 300 mA/g. We hope that the utilization of renewable sources and industrial Si slurry as battery materials can be improved and applied in energy storage application.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [1] Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    連結:
  2. [2] Abraham, K.M., Prospects and Limits of Energy Storage in Batteries. The Journal of Physical Chemistry Letters, 2015. 6(5): p. 830-844.
    連結:
  3. [3] Boukamp, B.A., G.C. Lesh, and R.A. Huggins, All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. Journal of The Electrochemical Society, 1981. 128(4): p. 725-729.
    連結:
  4. [4] Wu, H. and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012. 7(5): p. 414-429.
    連結:
  5. [5] Liang, B., Y. Liu, and Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources, 2014. 267: p. 469-490.
    連結:
  6. [6] Beaulieu, L.Y., K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters, 2001. 4(9): p. A137-A140.
    連結:
  7. [7] Rahman, M.A., G. Song, A.I. Bhatt, Y.C. Wong, and C. Wen, Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries. Advanced Functional Materials, 2016. 26(5): p. 647-678.
    連結:
  8. [8] Ryu, J.H., J.W. Kim, Y.-E. Sung, and S.M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and Solid-State Letters, 2004. 7(10): p. A306-A309.
    連結:
  9. [9] Yang, Z., J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, and H. Peng, Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015. 115(11): p. 5159-5223.
    連結:
  10. [10] Kim, P., L. Shi, A. Majumdar, and P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 2001. 87(21): p. 215502.
    連結:
  11. [12] Wu, Z.-Y., C. Li, H.-W. Liang, J.-F. Chen, and S.-H. Yu, Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie, 2013. 125(10): p. 2997-3001.
    連結:
  12. [14] WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
    連結:
  13. [16] Murphy, D.W. and P.A. Christian, Solid State Electrodes for High Energy Batteries. Science, 1979. 205(4407): p. 651-656.
    連結:
  14. [17] Mizushima, K., P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 連結:
  15. [19] Murphy, D.W., F.J. Di Salvo, J.N. Carides, and J.V. Waszczak, Topochemical reactions of rutile related structures with lithium. Materials Research Bulletin, 1978. 13(12): p. 1395-1402.
    連結:
  16. [20] Will, F.G., Hermetically sealed secondary battery with lanthanum nickel anode. 1975: U.S.
    連結:
  17. [21] Mohri, M., N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 1989. 26(3): p. 545-551.
    連結:
  18. [22] Wang, C.S., G.T. Wu, and W.Z. Li, Lithium insertion in ball-milled graphite. Journal of Power Sources, 1998. 76(1): p. 1-10.
    連結:
  19. [23] Aurbach, D., E. Zinigrad, Y. Cohen, and H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002. 148(3–4): p. 405-416.
    連結:
  20. [24] Suryanarayanan, V. and M. Noel, Effect of solvents and solvent mixtures on intercalation/de-intercalation behaviour of Li+ and ClO4− ions in polypropylene–graphite composite electrodes. Journal of Power Sources, 2001. 94(1): p. 137-141.
    連結:
  21. [25] Wrodnigg, G.H., J.O. Besenhard, and M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes. Journal of The Electrochemical Society, 1999. 146(2): p. 470-472.
    連結:
  22. [26] McMillan, R., H. Slegr, Z.X. Shu, and W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999. 81–82: p. 20-26.
    連結:
  23. [27] Joho, F., B. Rykart, A. Blome, P. Novák, H. Wilhelm, and M.E. Spahr, Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries. Journal of Power Sources, 2001. 97–98: p. 78-82.
    連結:
  24. [28] Suzuki, K., T. Hamada, and T. Sugiura, Effect of Graphite Surface Structure on Initial Irreversible Reaction in Graphite Anodes. Journal of The Electrochemical Society, 1999. 146(3): p. 890-897.
    連結:
  25. [29] Xing, W. and J.R. Dahn, Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons. Journal of The Electrochemical Society, 1997. 144(4): p. 1195-1201.
    連結:
  26. [30] Zheng, T., A.S. Gozdz, and G.G. Amatucci, Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures. Journal of The Electrochemical Society, 1999. 146(11): p. 4014-4018.
    連結:
  27. [31] Zaghib, K., G. Nadeau, and K. Kinoshita, Influence of edge and basal plane sites on the electrochemical behavior of flake-like natural graphite for Li-ion batteries. Journal of Power Sources, 2001. 97–98: p. 97-103.
    連結:
  28. [32] Zaghib, K., K. Tatsumi, H. Abe, T. Ohsaki, Y. Sawada, and S. Higuchi, Optimization of the Dimensions of Vapor‐Grown Carbon Fiber for Use as Negative Electrodes in Lithium‐Ion Rechargeable Cells. Journal of The Electrochemical Society, 1998. 145(1): p. 210-215.
    連結:
  29. [33] Suzuki, K., T. Iijima, and M. Wakihara, Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery. Electrochimica Acta, 1999. 44(13): p. 2185-2191.
    連結:
  30. [34] Noel, M. and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. Journal of Power Sources, 2002. 111(2): p. 193-209.
    連結:
  31. [35] Dahn, J.R., T. Zheng, Y. Liu, and J. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science, 1995. 270(5236): p. 590.
    連結:
  32. [36] Franklin, R.E. Crystallite growth in graphitizing and non-graphitizing carbons. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1951. The Royal Society.
    連結:
  33. [38] Dey, A.N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547-1549.
    連結:
  34. [39] Seefurth, R.N. and R.A. Sharma, Investigation of Lithium Utilization from A Lithium‐Silicon Electrode. Journal of The Electrochemical Society, 1977. 124(8): p. 1207-1214.
    連結:
  35. [40] Sharma, R.A. and R.N. Seefurth, Thermodynamic Properties of the Lithium‐Silicon System. Journal of The Electrochemical Society, 1976. 123(12): p. 1763-1768.
    連結:
  36. [41] Wen, C.J. and R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system. Journal of Solid State Chemistry, 1981. 37(3): p. 271-278.
    連結:
  37. [42] Zuo, X., J. Zhu, P. Müller-Buschbaum, and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017. 31: p. 113-143.
    連結:
  38. [43] Bourderau, S., T. Brousse, and D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 1999. 81–82: p. 233-236.
    連結:
  39. [44] Jung, H., M. Park, S.H. Han, H. Lim, and S.-K. Joo, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries. Solid State Communications, 2003. 125(7): p. 387-390.
    連結:
  40. [45] Ohara, S., J. Suzuki, K. Sekine, and T. Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil. Journal of Power Sources, 2003. 119–121: p. 591-596.
    連結:
  41. [46] Cui, L.-F., L. Hu, J.W. Choi, and Y. Cui, Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano, 2010. 4(7): p. 3671-3678.
    連結:
  42. [47] Wang, W. and P.N. Kumta, Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 2010. 4(4): p. 2233-2241.
    連結:
  43. [48] Chan, C.K., H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat Nano, 2008. 3(1): p. 31-35.
    連結:
  44. [49] Cui, L.-F., R. Ruffo, C.K. Chan, H. Peng, and Y. Cui, Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 2009. 9(1): p. 491-495.
    連結:
  45. [50] Kim, H., B. Han, J. Choo, and J. Cho, Three‐dimensional porous silicon particles for use in high‐performance lithium secondary batteries. Angewandte Chemie, 2008. 120(52): p. 10305-10308.
    連結:
  46. [51] Yu, Y., L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, and J. Maier, Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Advanced Materials, 2010. 22(20): p. 2247-2250.
    連結:
  47. [52] McDowell, M.T., S.W. Lee, W.D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater, 2013. 25(36): p. 4966-85.
    連結:
  48. [54] Wang, C.S., G.T. Wu, X.B. Zhang, Z.F. Qi, and W.Z. Li, Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling. Journal of The Electrochemical Society, 1998. 145(8): p. 2751-2758.
    連結:
  49. [55] Li, H., X. Huang, L. Chen, Z. Wu, and Y. Liang, A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries. Electrochemical and Solid-State Letters, 1999. 2(11): p. 547-549.
    連結:
  50. [56] Wang, G., J. Ahn, J. Yao, S. Bewlay, and H. Liu, Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004. 6(7): p. 689-692.
    連結:
  51. [57] Holzapfel, M., H. Buqa, W. Scheifele, P. Novák, and F.-M. Petrat, A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical communications, 2005(12): p. 1566-1568.
    連結:
  52. [58] Xu, Y., Y. Zhu, and C. Wang, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014. 2(25): p. 9751-9757.
    連結:
  53. [59] Zhang, R., Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, and D. Zhao, Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014. 26(39): p. 6749-6755.
    連結:
  54. [60] Hwang, T.H., Y.M. Lee, B.-S. Kong, J.-S. Seo, and J.W. Choi, Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters, 2012. 12(2): p. 802-807.
    連結:
  55. [61] Liu, N., H. Wu, M.T. McDowell, Y. Yao, C. Wang, and Y. Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 2012. 12(6): p. 3315-3321.
    連結:
  56. [62] Liu, N., Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, and Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano, 2014. 9(3): p. 187-192.
    連結:
  57. [63] Lei, Y., Z. Tang, B. Guo, and D. Jia, SBR/silica composites modified by a polymerizable protic ionic liquid. Polymer Journal, 2010. 42(7): p. 555-561.
    連結:
  58. [64] Tancharernrat, T., G.L. Rempel, and P. Prasassarakich, Preparation of styrene butadiene copolymer–silica nanocomposites via differential microemulsion polymerization and NR/SBR–SiO2 membranes for pervaporation of water–ethanol mixtures. Chemical Engineering Journal, 2014. 258: p. 290-300.
    連結:
  59. [65] Hochgatterer, N.S., M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability. Electrochemical and Solid-State Letters, 2008. 11(5): p. A76.
    連結:
  60. [66] Guo, J., A. Sun, X. Chen, C. Wang, and A. Manivannan, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2011. 56(11): p. 3981-3987.
    連結:
  61. [67] Yan, K., Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016. 1(3): p. 16010.
    連結:
  62. [68] Wang, Y.-X., S.-L. Chou, J.H. Kim, H.-K. Liu, and S.-X. Dou, Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity. Electrochimica Acta, 2013. 93: p. 213-221.
    連結:
  63. [69] Wang, M.-S. and L.-Z. Fan, Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. Journal of Power Sources, 2013. 244: p. 570-574.
    連結:
  64. [70] Xu, Y., G. Yin, Y. Ma, P. Zuo, and X. Cheng, Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry, 2010. 20(16): p. 3216-3220.
    連結:
  65. [11] Behabtu, N., C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, and M. Pasquali, Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity. Science, 2013. 339(6116): p. 182-186.
  66. [13] Van Gool, W., Fast ion transport in solids, solid state batteries and devices. (Proceedings of the NATO-sponsored advanced study institute of fast ion transport in solids, solid state batteries and devices, Belgirate, Italy 5-15 September 1972). 1973: Elsevier,New York; None. Medium: X; Size: Pages: 728.
  67. [15] Broadhead, J., S.J.F.J. Di, and F.A. Trumbore, Non-aqueous battery using chalcogenide electrode. 1975: U.S.
  68. [18] Thackeray, M.M., W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
  69. [37] Gholam-Abbas Nazri, G.P., Lithium Batteries: Science and Technology. 2008.
  70. [53] Wilson, A., B. Way, J. Dahn, and T. Van Buuren, Nanodispersed silicon in pregraphitic carbons. Journal of applied physics, 1995. 77(6): p. 2363-2369.