参考文献
|
-
[1] Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
連結:
-
[2] Abraham, K.M., Prospects and Limits of Energy Storage in Batteries. The Journal of Physical Chemistry Letters, 2015. 6(5): p. 830-844.
連結:
-
[3] Boukamp, B.A., G.C. Lesh, and R.A. Huggins, All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. Journal of The Electrochemical Society, 1981. 128(4): p. 725-729.
連結:
-
[4] Wu, H. and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012. 7(5): p. 414-429.
連結:
-
[5] Liang, B., Y. Liu, and Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources, 2014. 267: p. 469-490.
連結:
-
[6] Beaulieu, L.Y., K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters, 2001. 4(9): p. A137-A140.
連結:
-
[7] Rahman, M.A., G. Song, A.I. Bhatt, Y.C. Wong, and C. Wen, Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries. Advanced Functional Materials, 2016. 26(5): p. 647-678.
連結:
-
[8] Ryu, J.H., J.W. Kim, Y.-E. Sung, and S.M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and Solid-State Letters, 2004. 7(10): p. A306-A309.
連結:
-
[9] Yang, Z., J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, and H. Peng, Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015. 115(11): p. 5159-5223.
連結:
-
[10] Kim, P., L. Shi, A. Majumdar, and P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 2001. 87(21): p. 215502.
連結:
-
[12] Wu, Z.-Y., C. Li, H.-W. Liang, J.-F. Chen, and S.-H. Yu, Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie, 2013. 125(10): p. 2997-3001.
連結:
-
[14] WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
連結:
-
[16] Murphy, D.W. and P.A. Christian, Solid State Electrodes for High Energy Batteries. Science, 1979. 205(4407): p. 651-656.
連結:
-
[17] Mizushima, K., P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 連結:
-
[19] Murphy, D.W., F.J. Di Salvo, J.N. Carides, and J.V. Waszczak, Topochemical reactions of rutile related structures with lithium. Materials Research Bulletin, 1978. 13(12): p. 1395-1402.
連結:
-
[20] Will, F.G., Hermetically sealed secondary battery with lanthanum nickel anode. 1975: U.S.
連結:
-
[21] Mohri, M., N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 1989. 26(3): p. 545-551.
連結:
-
[22] Wang, C.S., G.T. Wu, and W.Z. Li, Lithium insertion in ball-milled graphite. Journal of Power Sources, 1998. 76(1): p. 1-10.
連結:
-
[23] Aurbach, D., E. Zinigrad, Y. Cohen, and H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002. 148(3–4): p. 405-416.
連結:
-
[24] Suryanarayanan, V. and M. Noel, Effect of solvents and solvent mixtures on intercalation/de-intercalation behaviour of Li+ and ClO4− ions in polypropylene–graphite composite electrodes. Journal of Power Sources, 2001. 94(1): p. 137-141.
連結:
-
[25] Wrodnigg, G.H., J.O. Besenhard, and M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes. Journal of The Electrochemical Society, 1999. 146(2): p. 470-472.
連結:
-
[26] McMillan, R., H. Slegr, Z.X. Shu, and W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999. 81–82: p. 20-26.
連結:
-
[27] Joho, F., B. Rykart, A. Blome, P. Novák, H. Wilhelm, and M.E. Spahr, Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries. Journal of Power Sources, 2001. 97–98: p. 78-82.
連結:
-
[28] Suzuki, K., T. Hamada, and T. Sugiura, Effect of Graphite Surface Structure on Initial Irreversible Reaction in Graphite Anodes. Journal of The Electrochemical Society, 1999. 146(3): p. 890-897.
連結:
-
[29] Xing, W. and J.R. Dahn, Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons. Journal of The Electrochemical Society, 1997. 144(4): p. 1195-1201.
連結:
-
[30] Zheng, T., A.S. Gozdz, and G.G. Amatucci, Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures. Journal of The Electrochemical Society, 1999. 146(11): p. 4014-4018.
連結:
-
[31] Zaghib, K., G. Nadeau, and K. Kinoshita, Influence of edge and basal plane sites on the electrochemical behavior of flake-like natural graphite for Li-ion batteries. Journal of Power Sources, 2001. 97–98: p. 97-103.
連結:
-
[32] Zaghib, K., K. Tatsumi, H. Abe, T. Ohsaki, Y. Sawada, and S. Higuchi, Optimization of the Dimensions of Vapor‐Grown Carbon Fiber for Use as Negative Electrodes in Lithium‐Ion Rechargeable Cells. Journal of The Electrochemical Society, 1998. 145(1): p. 210-215.
連結:
-
[33] Suzuki, K., T. Iijima, and M. Wakihara, Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery. Electrochimica Acta, 1999. 44(13): p. 2185-2191.
連結:
-
[34] Noel, M. and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. Journal of Power Sources, 2002. 111(2): p. 193-209.
連結:
-
[35] Dahn, J.R., T. Zheng, Y. Liu, and J. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science, 1995. 270(5236): p. 590.
連結:
-
[36] Franklin, R.E. Crystallite growth in graphitizing and non-graphitizing carbons. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1951. The Royal Society.
連結:
-
[38] Dey, A.N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547-1549.
連結:
-
[39] Seefurth, R.N. and R.A. Sharma, Investigation of Lithium Utilization from A Lithium‐Silicon Electrode. Journal of The Electrochemical Society, 1977. 124(8): p. 1207-1214.
連結:
-
[40] Sharma, R.A. and R.N. Seefurth, Thermodynamic Properties of the Lithium‐Silicon System. Journal of The Electrochemical Society, 1976. 123(12): p. 1763-1768.
連結:
-
[41] Wen, C.J. and R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system. Journal of Solid State Chemistry, 1981. 37(3): p. 271-278.
連結:
-
[42] Zuo, X., J. Zhu, P. Müller-Buschbaum, and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017. 31: p. 113-143.
連結:
-
[43] Bourderau, S., T. Brousse, and D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 1999. 81–82: p. 233-236.
連結:
-
[44] Jung, H., M. Park, S.H. Han, H. Lim, and S.-K. Joo, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries. Solid State Communications, 2003. 125(7): p. 387-390.
連結:
-
[45] Ohara, S., J. Suzuki, K. Sekine, and T. Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil. Journal of Power Sources, 2003. 119–121: p. 591-596.
連結:
-
[46] Cui, L.-F., L. Hu, J.W. Choi, and Y. Cui, Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano, 2010. 4(7): p. 3671-3678.
連結:
-
[47] Wang, W. and P.N. Kumta, Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 2010. 4(4): p. 2233-2241.
連結:
-
[48] Chan, C.K., H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat Nano, 2008. 3(1): p. 31-35.
連結:
-
[49] Cui, L.-F., R. Ruffo, C.K. Chan, H. Peng, and Y. Cui, Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 2009. 9(1): p. 491-495.
連結:
-
[50] Kim, H., B. Han, J. Choo, and J. Cho, Three‐dimensional porous silicon particles for use in high‐performance lithium secondary batteries. Angewandte Chemie, 2008. 120(52): p. 10305-10308.
連結:
-
[51] Yu, Y., L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, and J. Maier, Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Advanced Materials, 2010. 22(20): p. 2247-2250.
連結:
-
[52] McDowell, M.T., S.W. Lee, W.D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater, 2013. 25(36): p. 4966-85.
連結:
-
[54] Wang, C.S., G.T. Wu, X.B. Zhang, Z.F. Qi, and W.Z. Li, Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling. Journal of The Electrochemical Society, 1998. 145(8): p. 2751-2758.
連結:
-
[55] Li, H., X. Huang, L. Chen, Z. Wu, and Y. Liang, A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries. Electrochemical and Solid-State Letters, 1999. 2(11): p. 547-549.
連結:
-
[56] Wang, G., J. Ahn, J. Yao, S. Bewlay, and H. Liu, Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004. 6(7): p. 689-692.
連結:
-
[57] Holzapfel, M., H. Buqa, W. Scheifele, P. Novák, and F.-M. Petrat, A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical communications, 2005(12): p. 1566-1568.
連結:
-
[58] Xu, Y., Y. Zhu, and C. Wang, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014. 2(25): p. 9751-9757.
連結:
-
[59] Zhang, R., Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, and D. Zhao, Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014. 26(39): p. 6749-6755.
連結:
-
[60] Hwang, T.H., Y.M. Lee, B.-S. Kong, J.-S. Seo, and J.W. Choi, Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters, 2012. 12(2): p. 802-807.
連結:
-
[61] Liu, N., H. Wu, M.T. McDowell, Y. Yao, C. Wang, and Y. Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 2012. 12(6): p. 3315-3321.
連結:
-
[62] Liu, N., Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, and Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano, 2014. 9(3): p. 187-192.
連結:
-
[63] Lei, Y., Z. Tang, B. Guo, and D. Jia, SBR/silica composites modified by a polymerizable protic ionic liquid. Polymer Journal, 2010. 42(7): p. 555-561.
連結:
-
[64] Tancharernrat, T., G.L. Rempel, and P. Prasassarakich, Preparation of styrene butadiene copolymer–silica nanocomposites via differential microemulsion polymerization and NR/SBR–SiO2 membranes for pervaporation of water–ethanol mixtures. Chemical Engineering Journal, 2014. 258: p. 290-300.
連結:
-
[65] Hochgatterer, N.S., M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability. Electrochemical and Solid-State Letters, 2008. 11(5): p. A76.
連結:
-
[66] Guo, J., A. Sun, X. Chen, C. Wang, and A. Manivannan, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2011. 56(11): p. 3981-3987.
連結:
-
[67] Yan, K., Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016. 1(3): p. 16010.
連結:
-
[68] Wang, Y.-X., S.-L. Chou, J.H. Kim, H.-K. Liu, and S.-X. Dou, Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity. Electrochimica Acta, 2013. 93: p. 213-221.
連結:
-
[69] Wang, M.-S. and L.-Z. Fan, Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. Journal of Power Sources, 2013. 244: p. 570-574.
連結:
-
[70] Xu, Y., G. Yin, Y. Ma, P. Zuo, and X. Cheng, Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry, 2010. 20(16): p. 3216-3220.
連結:
-
[11] Behabtu, N., C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, and M. Pasquali, Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity. Science, 2013. 339(6116): p. 182-186.
-
[13] Van Gool, W., Fast ion transport in solids, solid state batteries and devices. (Proceedings of the NATO-sponsored advanced study institute of fast ion transport in solids, solid state batteries and devices, Belgirate, Italy 5-15 September 1972). 1973: Elsevier,New York; None. Medium: X; Size: Pages: 728.
-
[15] Broadhead, J., S.J.F.J. Di, and F.A. Trumbore, Non-aqueous battery using chalcogenide electrode. 1975: U.S.
-
[18] Thackeray, M.M., W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
-
[37] Gholam-Abbas Nazri, G.P., Lithium Batteries: Science and Technology. 2008.
-
[53] Wilson, A., B. Way, J. Dahn, and T. Van Buuren, Nanodispersed silicon in pregraphitic carbons. Journal of applied physics, 1995. 77(6): p. 2363-2369.
|