参考文献
|
-
[1] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett, D. Bintley, et al. First m87 event horizon telescope results. iv. imaging the central supermassive black hole. The Astrophysical Journal Letters, 875(1):L4, 2019.
-
[2] J. C. Algaba, J. Anczarski, K. Asada, M. Baloković, S. Chandra, Y.-Z. Cui, A. Falcone, M. Giroletti, C. Goddi, K. Hada, et al. Broadband multi wavelength properties of m87 during the 2017 event horizon telescope campaign. The Astrophysical Journal Letters, 911(1):L11, 2021.
-
[3] J. Biretta, W. Sparks, and F. Macchetto. Hubble space telescope observations of superluminal motion in the m87 jet. The Astrophysical Journal, 520(2):621, 1999.
-
[4] R. D. Blandford and R. L. Znajek. Electromagnetic extraction of energy from kerr black holes. Monthly Notices of the Royal Astronomical Society, 179(3):433–456, 1977.
-
[5] C. T. Bolton. Identification of cygnus x-1 with hde 226868. Nature, 235(5336):271–273, 1972.
-
[6] S. Bowyer, E. Byram, T. Chubb, and H. Friedman. Cosmic x-ray sources. Science, 147(3656):394–398, 1965.
-
[7] A. E. Broderick and A. Loeb. Imaging the black hole silhouette of m87: implications for jet formation and black hole spin. The Astrophysical Journal, 697(2):1164, 2009.
-
[8] E. H. T. Collaboration et al. First m87 event horizon telescope results. i. the shadow of the supermassive black hole. arXiv preprint arXiv:1906.11238, 2019.
-
[9] S. V. Fuerst and K. Wu. Radiation transfer of emission lines in curved space-time. Astronomy & Astrophysics, 424(3):733–746, 2004.
-
[10] D. E. Gary. Fourier synthesis imaging. EB. https://web.njit.edu/~gary/728/Lecture6.html.
-
[11] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. Faber, K. Gültekin, J. Murphy, and S. Tremaine. The black hole mass in m87 from gemini/nifs adaptive optics observations. The Astrophysical Journal, 729(2):119, 2011.
-
[12] G. Ghisellini. Radiative processes in high energy astrophysics, volume 873. Springer, 2013.
-
[13] K. Hada, M. Kino, A. Doi, H. Nagai, M. Honma, K. Akiyama, F. Tazaki, R. Lico, M. Giroletti, G. Giovannini, et al. High-sensitivity 86 ghz (3.5 mm) vlbi observations of m87: deep imaging of the jet base at a resolution of 10 schwarzschild radii. The Astrophysical Journal, 817(2):131, 2016.
-
[14] K. Hada, M. Kino, A. Doi, H. Nagai, M. Honma, Y. Hagiwara, M. Giroletti, G. Giovannini, and N. Kawaguchi. The innermost collimation structure of the m87 jet down to 10 schwarzschild radii. The Astrophysical Journal, 775(1):70, 2013.
-
[15] K. Hada, M. Kino, H. Nagai, Y. Hagiwara, N. Kawaguchi, et al. An origin of the radio jet in m87 at the location of the central black hole. Nature, 477(7363):185–187, 2011.
-
[16] S. Hirose, J. H. Krolik, J.-P. De Villiers, and J. F. Hawley. Magnetically driven accretion flows in the kerr metric. ii. structure of the magnetic field. The Astrophysical Journal, 606(2):1083, 2004.
-
[17] L. C. Ho. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys., 46:475–539, 2008.
-
[18] W. Junor, J. A. Biretta, and M. Livio. Formation of the radio jet in m87 at 100 schwarzschild radii from the central black hole. Nature, 401(6756):891–892, 1999.
-
[19] J. Kormendy and D. Richstone. Inward bound—the search for supermassive black holes in galactic nuclei. Annual review of astronomy and Astrophysics, 33(1):581– 624, 1995.
-
[20] Y. Kovalev, M. Lister, D. Homan, and K. Kellermann. The inner jet of the radio galaxy m87. The Astrophysical Journal Letters, 668:L27, 09 2007.
-
[21] J. H. Krolik. Active galactic nuclei: from the central black hole to the galactic environment, volume 59. Princeton University Press, 1999.
-
[22] R.-S. Lu, A. E. Broderick, F. Baron, J. D. Monnier, V. L. Fish, S. S. Doeleman, and V. Pankratius. Imaging the supermassive black hole shadow and jet base of m87 with the event horizon telescope. The Astrophysical Journal, 788(2):120, 2014.
-
[23] C. Ly, R. Walker, and J. Wrobel. An attempt to probe the radio jet collimation regions in ngc 4278, ngc 4374 (m84), and ngc 6166. The Astronomical Journal, 127(1):119, 2004
-
[24] D. Maoz. Low-luminosity active galactic nuclei: are they uv faint and radio loud? Monthly Notices of the Royal Astronomical Society, 377(4):1696–1710, 2007.
-
[25] J. C. McKinney and C. F. Gammie. A measurement of the electromagnetic luminosity of a kerr black hole. The astrophysical journal, 611(2):977, 2004.
-
[26] J. C. McKinney and R. Narayan. Disc–jet coupling in black hole accretion systems–i. general relativistic magnetohydrodynamical models. Monthly Notices of the Royal Astronomical Society, 375(2):513–530, 2007.
-
[27] D. L. Meier. The theory and simulation of relativistic jet formation: towards a unified model for micro-and macroquasars. New Astronomy Reviews, 47(6-7):667–672, 2003.
-
[28] D. L. Meier, S. Koide, and Y. Uchida. Magnetohydrodynamic production of relativistic jets. Science, 291(5501):84–92, 2001.
-
[29] N. M. Nagar, H. Falcke, and A. S. Wilson. Radio sources in low luminosity active galactic nuclei-iv. radio luminosity function, importance of jet power, and radio properties of the complete palomar sample. Astronomy & Astrophysics, 435(2):521–543, 2005.
-
[30] M. Nakamura, K. Asada, K. Hada, H.-Y. Pu, S. Noble, C. Tseng, K. Toma, M. Kino, H. Nagai, K. Takahashi, J.-C. Algaba, M. Orienti, K. Akiyama, A. Doi, G. Giovannini, M. Giroletti, M. Honma, S. Koyama, R. Lico, and F. Tazaki. Parabolic jets from the spinning black hole in m87. 10 2018.
-
[31] R. Narayan, J. McKinney, and A. Farmer. Self‐similar force‐free wind from an accretion disc. Monthly Notices of the Royal Astronomical Society, 375:548 – 566, 02 2007.
-
[32] R. S. Nemmen, T. Storchi-Bergmann, and M. Eracleous. Spectral models for lowluminosity active galactic nuclei in liners: the role of advection-dominated accretion and jets. Monthly Notices of the Royal Astronomical Society, 438(4):2804–2827, 2014.
-
[33] A. Pandya, Z. Zhang, M. Chandra, and C. F. Gammie. Polarized synchrotron emissivities and absorptivities for relativistic thermal, power law, and kappa distribution functions. The Astrophysical Journal, 822(1):34, 2016.
-
[34] E. W. Peng, A. Jordán, J. P. Blakeslee, S. Mieske, P. Côté, L. Ferrarese, W. E. Harris, J. P. Madrid, and G. R. Meurer. The color-magnitude relation for metal-poor globular clusters in m87: confirmation from deep hst/acs imaging. The AstrophysicalJournal, 703(1):42, 2009.
-
[35] W. H. Press and S. A. Teukolsky. Adaptive stepsize runge-kutta integration. Computers in Physics, 6(2):188–191, 1992.
-
[36] M. Prieto, J. Fernández-Ontiveros, S. Markoff, D. Espada, and O. González-Martín. The central parsecs of m87: jet emission and an elusive accretion disc. Monthly Notices of the Royal Astronomical Society, 457(4):3801–3816, 2016.
-
[37] H.-Y. Pu, K. Asada, and M. Nakamura. Modeling nearby low-luminosity activegalactic-nucleus jet images at all vlbi scales. Galaxies, 10(6):104, 2022.
-
[38] H.-Y. Pu, K. Yun, Z. Younsi, and S.-J. Yoon. Odyssey: a public gpu based code for general relativistic radiative transfer in kerr spacetime. The Astrophysical Journal, 820(2):105, 2016.
-
[39] R. A. Remillard and J. E. McClintock. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys., 44:49–92, 2006.
-
[40] F. Rieger. High energy astrophysics - lecture 4. EB. https://www.mpihd.mpg.de/personalhomes/frieger/HEA4.pdf.
-
[41] G. Rybicki, A. Lightman, and H. Paul. Book-review-radiative processes in astrophysics. Astronomische Nachrichten, 307:170, 1986.
-
[42] E. Salpeter. Accretion of interstellar matter by massive objects. Publications of Goddard Space Flight Center, page 165, 1964.
-
[43] S. Shibata, H. Tomatsuri, M. Shimanuki, K. Saito, and K. Mori. On the x-ray image of the crab nebula: comparison with chandra observations. Monthly Notices of the Royal Astronomical Society, 346(3):841–845, 2003.
-
[44] M. Spiegel and M. Handbook. Mcgraw-hill book company (schaum’s outline series). New York, page 98, 1968.
-
[45] K. Takahashi, K. Toma, M. Kino, M. Nakamura, and K. Hada. Fast-spinning black holes inferred from symmetrically limb-brightened radio jets. The Astrophysical Journal, 868(2):82, 2018.
-
[46] A. Tchekhovskoy, J. C. McKinney, and R. Narayan. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Monthly Notices of the Royal Astronomical Society, 388(2):551–572, 2008.
-
[47] R. Walker, C. Ly, W. Junor, and P. Hardee. A vlba movie of the jet launch region in m87. In Journal of Physics: Conference Series, volume 131, page 012053. IOP Publishing, 2008.
-
[48] R. C. Walker. M87 vlba movie at 43 ghz.
-
[49] R. C. Walker, P. E. Hardee, F. B. Davies, C. Ly, and W. Junor. The structure and dynamics of the subparsec jet in m87 based on 50 vlba observations over 17 years at 43 ghz. The Astrophysical Journal, 855(2):128, 2018.
-
[50] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi. The m87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. The Astrophysical Journal, 770(2):86, 2013.
-
[51] B. L. Webster and P. Murdin. Cygnus x-1—a spectroscopic binary with a heavy companion? Nature, 235:37–38, 1972.
-
[52] Z. Younsi, K. Wu, and S. V. Fuerst. General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astronomy & Astrophysics, 545:A13, 2012.
-
[53] Y. B. Zel’Dovich. The fate of a star and the evolution of gravitational energy upon accretion. In Soviet Physics Doklady, volume 9, page 195, 1964.
|