题名

模擬梅歇爾-87(Messier 87)中心快速旋轉黑洞之無線電噴流

并列篇名

Modeling M87 Radio Jet with a Fast-Spinning Black Hole

DOI

10.6342/NTU202300524

作者

李冠宏

关键词

梅歇爾 87 ; 黑洞 ; 相對論性噴流 ; 光線追蹤 ; 輻射轉移 ; ; M87 ; black hole ; relativstic jet ; ray-tracing ; radiative transfer ;

期刊名称

臺灣大學天文物理研究所學位論文

卷期/出版年月

2023年

学位类别

碩士

导师

薛熙于;卜宏毅

内容语文

英文

中文摘要

本研究由超大質量黑洞提供動力,探討從梅歇爾-87 (M87) 星系核心出現的大型無線電噴流呈現出對稱的臨邊增光效應 (limb-brightening)。藉由考慮中央黑洞的吸積盤與黑洞磁層配置,我們探討了相應的 VLBI 觀測特徵,包括圖像和光譜,亦改進了僅由相對論性電漿在連接至黑洞的大尺度磁場之無重力模型(Force-free model)。我們發現,M87 之噴流的對稱性臨邊增光效應 (symmetrical limb-brightening) 需要擁有一個快速旋轉的黑洞,與之前的研究結果相似。這種性質是因為電漿沿著噴流內大尺度磁場運動與為黑洞自旋函數的光柱 (light cylinder)的位置密切相關。我們亦證明了在噴流中具有非軸對稱質量負載 (mass loading) 的情況下,可以在距黑洞不同距離處改變 M87 噴流邊緣的較亮側。

英文摘要

Powered by a supermassive black hole, the large-scale radio jet emerging from the core of the Messier 87 (M87) galaxy exhibits a symmetric limb-brightened feature. Taking into account the accretion and black hole magnetosphere configurations of the central engine, we explore corresponding VLBI observational features, including images and spectra, with an improved force-free jet model which only consists of relativistic plasma motions along large-scale magnetic fields attached to the central black hole. It is found that the symmetric limb-brightening feature of the M87 jet requires a fast-spinning black hole, similar to previous studies. Such property is because the plasma motion along the large-scale magnetic field within the jet is closely related to the location of the light cylinder, which is a function of black hole spin. We also demonstrate that it is possible to vary the brighter side of the M87 jet limb at different distances from the black hole with non-axisymmetric mass loading in the jet.

主题分类 基礎與應用科學 > 物理
基礎與應用科學 > 天文學
理學院 > 天文物理研究所
参考文献
  1. [1] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett, D. Bintley, et al. First m87 event horizon telescope results. iv. imaging the central supermassive black hole. The Astrophysical Journal Letters, 875(1):L4, 2019.
  2. [2] J. C. Algaba, J. Anczarski, K. Asada, M. Baloković, S. Chandra, Y.-Z. Cui, A. Falcone, M. Giroletti, C. Goddi, K. Hada, et al. Broadband multi wavelength properties of m87 during the 2017 event horizon telescope campaign. The Astrophysical Journal Letters, 911(1):L11, 2021.
  3. [3] J. Biretta, W. Sparks, and F. Macchetto. Hubble space telescope observations of superluminal motion in the m87 jet. The Astrophysical Journal, 520(2):621, 1999.
  4. [4] R. D. Blandford and R. L. Znajek. Electromagnetic extraction of energy from kerr black holes. Monthly Notices of the Royal Astronomical Society, 179(3):433–456, 1977.
  5. [5] C. T. Bolton. Identification of cygnus x-1 with hde 226868. Nature, 235(5336):271–273, 1972.
  6. [6] S. Bowyer, E. Byram, T. Chubb, and H. Friedman. Cosmic x-ray sources. Science, 147(3656):394–398, 1965.
  7. [7] A. E. Broderick and A. Loeb. Imaging the black hole silhouette of m87: implications for jet formation and black hole spin. The Astrophysical Journal, 697(2):1164, 2009.
  8. [8] E. H. T. Collaboration et al. First m87 event horizon telescope results. i. the shadow of the supermassive black hole. arXiv preprint arXiv:1906.11238, 2019.
  9. [9] S. V. Fuerst and K. Wu. Radiation transfer of emission lines in curved space-time. Astronomy & Astrophysics, 424(3):733–746, 2004.
  10. [10] D. E. Gary. Fourier synthesis imaging. EB. https://web.njit.edu/~gary/728/Lecture6.html.
  11. [11] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. Faber, K. Gültekin, J. Murphy, and S. Tremaine. The black hole mass in m87 from gemini/nifs adaptive optics observations. The Astrophysical Journal, 729(2):119, 2011.
  12. [12] G. Ghisellini. Radiative processes in high energy astrophysics, volume 873. Springer, 2013.
  13. [13] K. Hada, M. Kino, A. Doi, H. Nagai, M. Honma, K. Akiyama, F. Tazaki, R. Lico, M. Giroletti, G. Giovannini, et al. High-sensitivity 86 ghz (3.5 mm) vlbi observations of m87: deep imaging of the jet base at a resolution of 10 schwarzschild radii. The Astrophysical Journal, 817(2):131, 2016.
  14. [14] K. Hada, M. Kino, A. Doi, H. Nagai, M. Honma, Y. Hagiwara, M. Giroletti, G. Giovannini, and N. Kawaguchi. The innermost collimation structure of the m87 jet down to 10 schwarzschild radii. The Astrophysical Journal, 775(1):70, 2013.
  15. [15] K. Hada, M. Kino, H. Nagai, Y. Hagiwara, N. Kawaguchi, et al. An origin of the radio jet in m87 at the location of the central black hole. Nature, 477(7363):185–187, 2011.
  16. [16] S. Hirose, J. H. Krolik, J.-P. De Villiers, and J. F. Hawley. Magnetically driven accretion flows in the kerr metric. ii. structure of the magnetic field. The Astrophysical Journal, 606(2):1083, 2004.
  17. [17] L. C. Ho. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys., 46:475–539, 2008.
  18. [18] W. Junor, J. A. Biretta, and M. Livio. Formation of the radio jet in m87 at 100 schwarzschild radii from the central black hole. Nature, 401(6756):891–892, 1999.
  19. [19] J. Kormendy and D. Richstone. Inward bound—the search for supermassive black holes in galactic nuclei. Annual review of astronomy and Astrophysics, 33(1):581– 624, 1995.
  20. [20] Y. Kovalev, M. Lister, D. Homan, and K. Kellermann. The inner jet of the radio galaxy m87. The Astrophysical Journal Letters, 668:L27, 09 2007.
  21. [21] J. H. Krolik. Active galactic nuclei: from the central black hole to the galactic environment, volume 59. Princeton University Press, 1999.
  22. [22] R.-S. Lu, A. E. Broderick, F. Baron, J. D. Monnier, V. L. Fish, S. S. Doeleman, and V. Pankratius. Imaging the supermassive black hole shadow and jet base of m87 with the event horizon telescope. The Astrophysical Journal, 788(2):120, 2014.
  23. [23] C. Ly, R. Walker, and J. Wrobel. An attempt to probe the radio jet collimation regions in ngc 4278, ngc 4374 (m84), and ngc 6166. The Astronomical Journal, 127(1):119, 2004
  24. [24] D. Maoz. Low-luminosity active galactic nuclei: are they uv faint and radio loud? Monthly Notices of the Royal Astronomical Society, 377(4):1696–1710, 2007.
  25. [25] J. C. McKinney and C. F. Gammie. A measurement of the electromagnetic luminosity of a kerr black hole. The astrophysical journal, 611(2):977, 2004.
  26. [26] J. C. McKinney and R. Narayan. Disc–jet coupling in black hole accretion systems–i. general relativistic magnetohydrodynamical models. Monthly Notices of the Royal Astronomical Society, 375(2):513–530, 2007.
  27. [27] D. L. Meier. The theory and simulation of relativistic jet formation: towards a unified model for micro-and macroquasars. New Astronomy Reviews, 47(6-7):667–672, 2003.
  28. [28] D. L. Meier, S. Koide, and Y. Uchida. Magnetohydrodynamic production of relativistic jets. Science, 291(5501):84–92, 2001.
  29. [29] N. M. Nagar, H. Falcke, and A. S. Wilson. Radio sources in low luminosity active galactic nuclei-iv. radio luminosity function, importance of jet power, and radio properties of the complete palomar sample. Astronomy & Astrophysics, 435(2):521–543, 2005.
  30. [30] M. Nakamura, K. Asada, K. Hada, H.-Y. Pu, S. Noble, C. Tseng, K. Toma, M. Kino, H. Nagai, K. Takahashi, J.-C. Algaba, M. Orienti, K. Akiyama, A. Doi, G. Giovannini, M. Giroletti, M. Honma, S. Koyama, R. Lico, and F. Tazaki. Parabolic jets from the spinning black hole in m87. 10 2018.
  31. [31] R. Narayan, J. McKinney, and A. Farmer. Self‐similar force‐free wind from an accretion disc. Monthly Notices of the Royal Astronomical Society, 375:548 – 566, 02 2007.
  32. [32] R. S. Nemmen, T. Storchi-Bergmann, and M. Eracleous. Spectral models for lowluminosity active galactic nuclei in liners: the role of advection-dominated accretion and jets. Monthly Notices of the Royal Astronomical Society, 438(4):2804–2827, 2014.
  33. [33] A. Pandya, Z. Zhang, M. Chandra, and C. F. Gammie. Polarized synchrotron emissivities and absorptivities for relativistic thermal, power law, and kappa distribution functions. The Astrophysical Journal, 822(1):34, 2016.
  34. [34] E. W. Peng, A. Jordán, J. P. Blakeslee, S. Mieske, P. Côté, L. Ferrarese, W. E. Harris, J. P. Madrid, and G. R. Meurer. The color-magnitude relation for metal-poor globular clusters in m87: confirmation from deep hst/acs imaging. The AstrophysicalJournal, 703(1):42, 2009.
  35. [35] W. H. Press and S. A. Teukolsky. Adaptive stepsize runge-kutta integration. Computers in Physics, 6(2):188–191, 1992.
  36. [36] M. Prieto, J. Fernández-Ontiveros, S. Markoff, D. Espada, and O. González-Martín. The central parsecs of m87: jet emission and an elusive accretion disc. Monthly Notices of the Royal Astronomical Society, 457(4):3801–3816, 2016.
  37. [37] H.-Y. Pu, K. Asada, and M. Nakamura. Modeling nearby low-luminosity activegalactic-nucleus jet images at all vlbi scales. Galaxies, 10(6):104, 2022.
  38. [38] H.-Y. Pu, K. Yun, Z. Younsi, and S.-J. Yoon. Odyssey: a public gpu based code for general relativistic radiative transfer in kerr spacetime. The Astrophysical Journal, 820(2):105, 2016.
  39. [39] R. A. Remillard and J. E. McClintock. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys., 44:49–92, 2006.
  40. [40] F. Rieger. High energy astrophysics - lecture 4. EB. https://www.mpihd.mpg.de/personalhomes/frieger/HEA4.pdf.
  41. [41] G. Rybicki, A. Lightman, and H. Paul. Book-review-radiative processes in astrophysics. Astronomische Nachrichten, 307:170, 1986.
  42. [42] E. Salpeter. Accretion of interstellar matter by massive objects. Publications of Goddard Space Flight Center, page 165, 1964.
  43. [43] S. Shibata, H. Tomatsuri, M. Shimanuki, K. Saito, and K. Mori. On the x-ray image of the crab nebula: comparison with chandra observations. Monthly Notices of the Royal Astronomical Society, 346(3):841–845, 2003.
  44. [44] M. Spiegel and M. Handbook. Mcgraw-hill book company (schaum’s outline series). New York, page 98, 1968.
  45. [45] K. Takahashi, K. Toma, M. Kino, M. Nakamura, and K. Hada. Fast-spinning black holes inferred from symmetrically limb-brightened radio jets. The Astrophysical Journal, 868(2):82, 2018.
  46. [46] A. Tchekhovskoy, J. C. McKinney, and R. Narayan. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Monthly Notices of the Royal Astronomical Society, 388(2):551–572, 2008.
  47. [47] R. Walker, C. Ly, W. Junor, and P. Hardee. A vlba movie of the jet launch region in m87. In Journal of Physics: Conference Series, volume 131, page 012053. IOP Publishing, 2008.
  48. [48] R. C. Walker. M87 vlba movie at 43 ghz.
  49. [49] R. C. Walker, P. E. Hardee, F. B. Davies, C. Ly, and W. Junor. The structure and dynamics of the subparsec jet in m87 based on 50 vlba observations over 17 years at 43 ghz. The Astrophysical Journal, 855(2):128, 2018.
  50. [50] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi. The m87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. The Astrophysical Journal, 770(2):86, 2013.
  51. [51] B. L. Webster and P. Murdin. Cygnus x-1—a spectroscopic binary with a heavy companion? Nature, 235:37–38, 1972.
  52. [52] Z. Younsi, K. Wu, and S. V. Fuerst. General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astronomy & Astrophysics, 545:A13, 2012.
  53. [53] Y. B. Zel’Dovich. The fate of a star and the evolution of gravitational energy upon accretion. In Soviet Physics Doklady, volume 9, page 195, 1964.