题名

低介電常數芳香族高分子之合成與鑑定

并列篇名

Synthesis and Characterization of Aromatic Base Polymers with Low Dielectric Constant

DOI

10.6342/NTU201602228

作者

楊旻錡

关键词

氧化聚合 ; 聚苯醚高分子 ; 聚萘高分子 ; 熱穩定性 ; 低介電常數 ; 低消散因子 ; 高頻應用 ; oxidative polymerization ; poly (phenylene oxide) ; poly (naphthalene) ; low dielectric constant ; low dissipation factor ; high frequency

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳文章

内容语文

英文

中文摘要

芳香族聚合物,包含聚芳醚、聚醯亞胺,已被用為電子產品中的介電材料有幾十年之久。近年來,電子裝置的工作頻率已經達到千兆赫的譜帶,且大量資料傳輸的需求會促使電子裝置的中做頻率在未來有增高的趨勢。由於高頻運用的需求,下一代的通信需要具有低介電常數與高熱性能的材料。因此,本論文著重在開發具備新低介電常數以及優越熱性質的芳香族高分子。 本研究第二章,交聯poly[2,6-dimethylphenol (95 mol%)-co- 2,6-diphenylphenol (5 mol%)] [poly(2,6-DMP95-co-2,6-DDP5)]乃是藉由2,6-二甲基苯酚與 2,6-二苯基苯酚共聚,並與交聯劑—MBMP反應後製備。交聯後高分子膜也具備相對優越的熱穩定性與玻璃轉化溫度。在10千兆赫頻率下,其介電常數與消散因子分別為 2.64 與 0.004,這顯示此材料適用於高速與高頻的電子應用。 此外以此材料為絕緣層的雙層覆銅基板已被製作,說明此材料適合高頻應用。 本研究第三章, 氧化耦合反應被用於合成高分子量 poly(2,6-dihydroxy-1,5-naphthalene).此外,一系列不同烷基側鏈的 poly(2,6-dialkoxy-1,5-naphthalene)s被合成製備。由於芳香環結構以及萘環主鏈的高硬度,合成萘環系列高分子具有高熱穩定性,包含熱裂解溫度高於360oC與在30oC 到 300oC區間內觀測不到玻璃轉移溫度。這類高分子具有相對低的介電係數是由於相鄰萘環非常大的二面角造成相當大的自由體積。各高分子薄膜:poly(2,6-dibutoxy-1,5-naphthalene) (PDBN)、poly(2,6-dihexoxy-1,5-naphthalene) (PDHexN)與poly(2,6-dicyclohexyl-methoxy-1,5-naphthalene) (PCHMN) 在10千兆赫頻率下的介電常數分別為2.65、2.82與 2.79。

英文摘要

Aromatic polymers, such as poly(aryl ether)s, polyimides, have been used as dielectric materials for microelectronics for decades. In recent years, electronic devices’ working frequency reaches GHz bands, and it is believed that requirement of transmitting lager amount of information will force microelectronics operating in a higher frequency in the future. For such high frequency demand, low dielectric constant with high thermal performances materials are in need for next generation of communication. Therefore, in this thesis we explore new aromatic polymers containing low dielectric constant with intrinsic excellent thermal performances. In chapter 2, The cross-linked poly(2,6-DMP95-co-2,6-DDP5) was prepared by oxidative coupling polymerization of 2,6-DMP with 2,6-DDP, followed by the reaction with 4,4’-methylenebis[2,6-bis(methoxymethyl)]phenol (MBMP) as a cross-linking agent. The cross-linked polymer exhibited a good thermal stability as well as a high glass transition temperature. The dielectric constant and dissipation factor of cross-linked polymer were 2.6 and 0.004 at 10 GHz, respectively. Moreover, a flexible double layer copper clad laminate based on the cross-linked polymer composite was successfully prepared, indicating their potential applications in high-speed and high-frequency electrical applications. In chapter 3, oxidative coupling was used to obtained relative high molecular weight poly(2,6-dihydroxy-1,5-naphthalene). Furthermore, a series of poly(2,6-dialkoxy-1,5-naphthalene)s with different length of alkoxy side chain were synthesized. Out of aromatic geometry and highly rigidity of naphthalene backbone, the synthesized polymers possessed high thermal stability with Td above 360oC, and showed no Tg from 30oC to 300oC. The low e constant of these polymers are caused by a large dihedral angle between the neighboring naphthalene rings, resulting in a large free volume. ε of poly(2,6-dibutoxy-1,5-naphthalene) (PDBN), poly(2,6-dihexoxy-1,5- naphthalene) (PDHexN), and poly(2,6-dicyclohexyl-methoxy- 1,5-naphthalene) (PCHMN) were estimated as 2.65, 2.81, and 2.79 at 10GHz, respectively.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [1] S. P. Muraka, M. Eizenberg, A. K. Sinha, "Interlayer dielectrics for semiconductor technologies", Academic Press, 2003.
    連結:
  2. [2] T. Sakurai, Electron Devices, IEEE Transactions on 1993, 40, 118.
    連結:
  3. [3] M. T. Bohr, Solid State Technology 1996, 39, 105.
    連結:
  4. [5] F. McCluskey, M. Dash, Z. Wang, D. Huff, Microelectronics reliability 2006, 46, 1910.
    連結:
  5. [8] H. Treichel, Journal of Elec Materi 2001, 30, 290.
    連結:
  6. [10] N. H. Hendricks, Solid State Technology 1995, 38, 117.
    連結:
  7. [12] J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, "Chemical mechanical planarization of microelectronic materials", John Wiley & Sons, 2008.
    連結:
  8. [16] S. Banerjee, M. K. Madhra, V. Kute, Journal of applied polymer science 2004, 93, 821.
    連結:
  9. [21] S. Banerjee, G. Maier, M. Burger, Macromolecules 1999, 32, 4279.
    連結:
  10. [24] A. K. Salunke, A. Ghosh, S. Banerjee, Journal of applied polymer science 2007, 106, 664.
    連結:
  11. [26] A. K. Mohanty, S. K. Sen, A. Ghosh, S. Maji, S. Banerjee, Polymers for Advanced Technologies 2010, 21, 767.
    連結:
  12. [29] A. F. Yee, Polymer Engineering & Science 1977, 17, 213.
    連結:
  13. [31] J. Jachowicz, M. Kryszewski, M. Mucha, Macromolecules 1984, 17, 1315.
    連結:
  14. [32] I. Yoshiyuki, O. Hiroji, A. Takeshi, K. Teruo, "Syntheses and Properties of Allylated Poly(2,6-dimethyl-1,4-phenylene ether)", in Microelectronics Technology, American Chemical Society, 1995, p. 485.
    連結:
  15. [36] G. R. Almen, "Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound", Google Patents, 2015.
    連結:
  16. [38] H. J. Hwang, S. W. Hsu, C. S. Wang, Journal of applied polymer science 2008, 110, 1880.
    連結:
  17. [40] H. A. van Aert, M. H. van Genderen, G. J. van Steenpaal, L. Nelissen, E. Meijer, J. Liska, Macromolecules 1997, 30, 6056.
    連結:
  18. [42] J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 5278.
    連結:
  19. [43] J. Nunoshige, H. Akahoshi, M. Ueda, High Performance Polymers 2010, 22, 458.
    連結:
  20. [45] P. Townsend, S. Martin, J. Godschalx, D. Romer, D. Smith, D. Castillo, R. DeVries, G. Buske, N. Rondan, S. Froelicher, "SiLK polymer coating with low dielectric constant and high thermal stability for ULSI interlayer dielectric", in MRS Proceedings, Cambridge Univ Press, 1997, p. 476/9.
    連結:
  21. [46] (1998), Google Patents, invs.: G. R. Buske, R. A. Devries, J. P. Godschalx, Z. Lysenko, S. J. Martin, M. E. Mills, D. R. Romer, D. W. Smith, Y. H. So, P. H. Townsend;
    連結:
  22. [48] J. A. Davis, J. D. Meindl, "Interconnect technology and design for gigascale integration", Springer Science & Business Media, 2012.
    連結:
  23. [49] C. E. Sroog, Progress in Polymer Science 1991, 16, 561.
    連結:
  24. [50] (1999), Google Patents, invs.: J. P. Godschalx, D. R. Romer, Y. H. So, Z. Lysenko, M. E. Mills, G. R. Buske, P. H. Townsend, D. W. Smith, S. J. Martin, R. A. DeVries;
    連結:
  25. [52] G. Maier, Progress in polymer science 2001, 26, 3.
    連結:
  26. [54] K. Tsuchiya, M. Ueda, Polym. J 2006, 38, 956.
    連結:
  27. [55] R. N. Vrtis, K. A. Heap, W. F. Burgoyne, L. M. Robeson, "Poly (arylene ethers) as low dielectric constant materials for ULSI interconnect applications", in MRS Proceedings, Cambridge Univ Press, 1996, p. 443/171.
    連結:
  28. [60] K. Mizoguchi, M. Ueda, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 4949.
    連結:
  29. [62] K. Mizoguchi, M. Ueda, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 4949.
    連結:
  30. [64] D. J. Liaw, W. T. Tseng, "New organosoluble polyimides with low dielectric constants derived from bis [4‐(2‐trifluoromethyl‐4‐aminophenoxy) phenyl] diphenylmethylene", in Macromolecular Symposia, Wiley Online Library, 2003, p. 199/351.
    連結:
  31. [65] K. Goto, T. Akiike, Y. Inoue, M. Matsubara, "Polymer design for thermally stable polyimides with low dielectric constant", in Macromolecular Symposia, Wiley Online Library, 2003, p. 199/321.
    連結:
  32. [66] H. Shah, S. Brittain, Q. Huang, S.-J. Hwu, G. Whitesides, D. Smith, Chemistry of materials 1999, 11, 2623.
    連結:
  33. [67] R. L. Carroll, C. B. Gorman, Angewandte Chemie 2002, 114, 4556.
    連結:
  34. [4] E. Sacher, "Metallization of polymers 2", Springer, 2002.
  35. [6] J. Lau, C. Wong, N. Lee, S. R. Lee, "Electronics manufacturing with lead-free halogen-free, and conductive–adhesive handbooks", McGraw-Hill, 2003.
  36. [7] D. Lu, C. Wong, "Materials for advanced packaging", Springer, 2009.
  37. [9] A. H. Labun, Journal of Vacuum Science & Technology B 1994, 12, 3138.
  38. [11] K. Mukai, A. Saiki, K. Yamanaka, S. Harada, S. Shoji, Solid-State Circuits, IEEE Journal of 1978, 13, 462.
  39. [13] S. Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Polymer 2003, 44, 613.
  40. [14] M. K. Madhra, A. K. Salunke, S. Banerjee, S. Prabha, Macromolecular Chemistry and Physics 2002, 203, 1238.
  41. [15] V. Kute, S. Banerjee, Macromolecular Chemistry and Physics 2003, 204, 2105.
  42. [17] P. E. Cassidy, T. M. Aminabhavi, J. M. Farley, Journal of Macromolecular Science—Reviews in Macromolecular Chemistry and Physics 1989, 29, 365.
  43. [18] (1992), Google Patents, invs.: F. W. Mercer, T. D. Goodman, A. N. K. Lau, L. P. Vo, R. C. Sovish;
  44. [19] (1992), Google Patents, invs.: F. W. Mercer, R. C. Sovish;
  45. [20] J. A. Irvin, C. J. Neef, K. M. Kane, P. E. Cassidy, G. Tullos, A. K. St Clair, Journal of Polymer Science Part A: Polymer Chemistry 1992, 30, 1675.
  46. [22] S. Banerjee, G. Maier, Chemistry of materials 1999, 11, 2179.
  47. [23] S. Banerjee, G. Maier, A. Salunke, M. Madhra, Journal of applied polymer science 2001, 82, 3149.
  48. [25] M. Aggarwal, S. Maji, S. Kumar Sen, B. Dasgupta, S. Chatterjee, A. Ghosh, S. Banerjee, Journal of applied polymer science 2009, 112, 1226.
  49. [27] A. S. Hay, H. S. Blanchard, G. F. Endres, J. W. Eustance, Journal of the American Chemical Society 1959, 81, 6335.
  50. [28] (1967), Google Patents, inv. A. S. Hay;
  51. [30] J. Stoelting, F. E. Karasz, W. J. Macknight, Polymer Engineering & Science 1970, 10, 133.
  52. [33] Y. Kitai, H. Fujiwara, "Modified polyphenylene ether, method for preparing same, polyphenylene ether resin composition, resin varnish, prepreg, metal-clad laminate and printed circuit board", Google Patents, 2013.
  53. [34] E. N. Peters, S. M. Fisher, "Poly (phenylene ether)/epoxy homogeneous solid and powder coating composition incorporating same", Google Patents, 2013.
  54. [35] E. K. Peters, Alexey; Delsman, Erik; Guo, Hua; Carrillo, Alvaro; Rocha, Gerardo, "Polyphenylene ether macromonomers. I. Property Enhancements in thermoset resins via novel telechelic oligomers," in Society of Plastics Engineers Annual Technical Conference, 2007211.
  55. [37] E. N. P. S. M. F. N. J. M. P. H. Guo, "Polyphenylene ether macromonomers. II. Property Enhancements in cyanate ester resins", in Society of Plastics Engineers Annual Technical Conference, 2009.
  56. [39] J. Liska, H. A. M. Van Aert, G. De Wit, "Redistribution of polyphenylene ethers and polyphenylene ethers with novel structure", Google Patents, 1999.
  57. [41] T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda, Polymer 2004, 45, 843.
  58. [44] 布重純, 天羽悟, リяヱЬ①ЯヱЗ実装学会誌 2009, 12, 333.
  59. [47] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer, P. H. Townsend, Advanced Materials 2000, 12, 1769.
  60. [51] N. H. Hendricks, Solid State Technology 1995, 38, 117.
  61. [53] Y. Watanabe, Y. Shibasaki, S. Ando, M. Ueda, Polym. J 2006, 38, 79.
  62. [56] J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, Chemistry Letters 2007, 36, 238.
  63. [57] T. B. Poulsen, K. A. J?rgensen, Chemical reviews 2008, 108, 2903.
  64. [58] H. Huang, R. Peters, Angewandte Chemie International Edition 2009, 48, 604.
  65. [59] Y.-J. Sun, R. J. Willemse, T. Liu, W. E. Baker, Polymer 1998, 39, 2201.
  66. [61] K. Mizoguchi, M. Ueda, Polymer journal 2008, 40, 645.
  67. [63] R. Havemann, M. Jain, R. List, A. Ralston, W. Shih, C. Jin, M. Chang, E. Zielinski, G. Dixit, A. Singh, "Overview of process integration issues for low k dielectrics", in MRS Proceedings, Cambridge Univ Press, 1998, p. 511/3.
  68. [68] T. M. Long, T. M. Swager, Journal of the American Chemical Society 2003, 125, 14113.
  69. [69] Y. Sasada, Y. Shibasaki, M. Suzuki, M. Ueda, Polymer 2003, 44, 355.