题名

丙二硫醇、丙二胺與三苯四乙炔化合物的電子傳輸能譜: 理論模擬與電化學電位控制之單分子i–Ewk 曲線之比較

并列篇名

Correlation of Simulated Transmission Spectra with i–Ewk Curves of Electrochemically Gated Molecular Junctions: Propanedithiol, Propanediamine and 1,4-Bis(2-(4-(triphenylphosphinylauryl)ethynylphenyl)ethynyl)benzene

DOI

10.6342/NTU201702886

作者

蕭涵

关键词

電化學掃描穿隧顯微術 ; 單分子電性 ; 穿透能譜 ; 能量匹配 ; electrochemical scanning tunneling spectroscopy ; transmission spectra ; single-molecule conductance ; energy-level alignment

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳俊顯

内容语文

繁體中文

中文摘要

導電值是物質傳輸電子能力強弱的指標。在Metal–Molecule–Metal(MMM)系統中,單分子導電值可視為電子通過分子的穿透機率,分子能階離電極費米能階(Fermi level, EF)越近,即能階匹配程度(energy-level alignment)越高時,電子穿透機率越高,導電值越大。 本實驗室模擬了在小偏壓下,金電極與丙二硫醇及三苯二乙炔化合物(1,4-bis(2-(4-(triphenylphosphinylauryl)ethynylphenyl)ethynyl)benzene, OPE3)架接之穿透能譜(transmission spectra),發現兩分子以HOMO 為主要導電之軌域,而頭基–電極耦合程度較佳的OPE3,HOMO 的波峰也較寬。由此可推論,因丙二胺的頭基–電極作用力較丙二硫醇差,HOMO 波峰是三分子中最窄的。為研究此三分子的導電值性質,我們利用掃描穿隧顯微術破裂點接合法(scanning tunneling microscopy break junction, STM bj),搭配自製有機相參考電極,以電化學方法調控工作電極EF (= Ewk)位置,藉此調控能階匹配的程度。固定探針與表面間的偏壓(Ebias)對分子進行i-Ewk 掃描,可觀察靠近或遠離分子軌域時的導電值變化。結果顯示,隨Ewk往HOMO 掃描時,能階匹配程度提升,三個分子導電值皆隨之增加,但上升程度與頭基–電極耦合程度有關。然而,三個分子的i-Ewk 曲線都有兩種趨勢:導電值隨工作電位變化而上升,與導電值不隨工作電位改變。理論模擬顯示,電極形狀會影響分子的穿透能譜,當平面狀電極與分子鍵結時,分子穿透能譜會向左位移,HOMO 會往遠離電極EF 方向移動。故改變Ewk,能階匹配的程度低,導電值變化不明顯,與實驗結果一致。

英文摘要

Single-molecule conductance is an important index to show the electron transport efficiency through the Metal–Molecule–Metal junction. The closer the molecular frontier orbitals and Fermi levels are, namely higher degree of energy level alignment between Fermi levels and molecular frontier orbitals, the higher transmission probability would be, rendering higher conductance. Our group simulated the transmission spectra of 1,3-propanedithiol and 1,4-bis(2-(4-(triphenylphosphinylauryl)ethynylphenyl)ethynyl)benzene (OPE3) under small bias, finding the HOMOs of these molecules are the major conducting orbitals. OPE3 has better headgroup-electrode coupling, and also has wider HOMO peak on the spectra. Hence, we can infer that diamine will show the narrowest HOMO peak because of its weakest headgroup-electrode coupling. We use Scanning tunneling microscopy break junction combined with homemade organic phase reference electrode, using electrochemical system to control the potential of the working electrode, Ewk(=EF), for tuning the extent of energy level alignment. Operate i-Ewk scanning on the molecules with fixed bias between electrodes to observe the change of conductance while tuning Ewk. The results suggest that when Ewk scanning toward HOMO, the extent of energy level alignment increase, and the conductance of three molecules increase accordingly. However, the increase is due to the extent of the coupling. And we also found that the shape of the electrode would influence the transmission spectra, causing two trends of i-Ewk curves.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. (1) Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277-283.
    連結:
  2. (2) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 2006, 128, 15874-15881.
    連結:
  3. (3) Liu, H.; Wang, N.; Zhao, J.; Guo, Y.; Yin, X.; Boey, F. Y. C.; Zhang, H. Length-Dependent Conductance of Molecular Wires and Contact Resistance in Metal–Molecule–Metal Junctions. ChemPhysChem 2008, 9, 1416-1424.
    連結:
  4. (4) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bc; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T. Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts. Nano Lett. 2010, 10, 156-163.
    連結:
  5. (5) Li, X.; He, J.; Hihath, J.; Xu, B.; Lindsay, S. M.; Tao, N. Conductance of Single Alkanedithiols: Conduction Mechanism and Effect of Molecule−Electrode Contacts. J. Am. Chem. Soc. 2006, 128, 2135-2141.
    連結:
  6. (6) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904-907.
    連結:
  7. (8) Hong, W.; Manrique, D. Z.; Moreno-GarcC-a, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group. J. Am. Chem. Soc. 2012, 134, 2292-2304.
    連結:
  8. (9) Ko, C.-H.; Huang, M.-J.; Fu, M.-D.; Chen, C.-H. Superior Contact for Single-Molecule Conductance: Electronic Coupling of Thiolate and Isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 2010, 132, 756-764.
    連結:
  9. (10) Tian, J.-H.; Yang, Y.; Zhou, X.-S.; Schöllhorn, B.; Maisonhaute, E.; Chen, Z.-B.; Yang, F.-Z.; Chen, Y.; Amatore, C.; Mao, B.-W.; Tian, Z.-Q. Electrochemically Assisted Fabrication of Metal Atomic Wires and Molecular Junctions by MCBJ and STM-BJ Methods. ChemPhysChem 2010, 11, 2745-2755.
    連結:
  10. (11) Ting, T.-C.; Hsu, L.-Y.; Huang, M.-J.; Horng, E.-C.; Lu, H.-C.; Hsu, C.-H.; Jiang, C.-H.; Jin, B.-Y.; Peng, S.-M.; Chen, C.-h. Energy-Level Alignment for Single-Molecule Conductance of Extended Metal-Atom Chains. Angew. Chem. Int. Ed. 2015, 54, 15734-15738.
    連結:
  11. (12) Darwish, N.; Díez-Pérez, I.; Guo, S.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Single Molecular Switches: Electrochemical Gating of a Single Anthraquinone-Based Norbornylogous Bridge Molecule. J. Phys. Chem. C 2012, 116, 21093-21097.
    連結:
  12. (13) Chen, F.; He, J.; Nuckolls, C.; Roberts, T.; Klare, J. E.; Lindsay, S. A Molecular Switch Based on Potential-Induced Changes of Oxidation State. Nano Lett. 2005, 5, 503-506.
    連結:
  13. (15) Nichols, R. J.; Higgins, S. J. Single Molecule Nanoelectrochemistry in Electrical Junctions. Acc. Chem. Res. 2016, 49, 2640-2648.
    連結:
  14. (16) Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. J. Measurement of Single-Molecule Conductance. Annu. Rev. Phys. Chem. 2007, 58, 535-564.
    連結:
  15. (17) Moreland, J.; Ekin, J. W.; J., F. Electron tunneling experiments using Nb‐Sn ‘‘break’’ junctions. J. Appl. Phys. 1985, 58, 3888-3895.
    連結:
  16. (18) Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 1992, 69, 140-143.
    連結:
  17. (19) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a Molecular Junction. Science 1997, 278, 252-254.
    連結:
  18. (20) Tsutsui, M.; Taniguchi, M.; Kawai, T. Local Heating in Metalb Moleculeb Metal Junctions. Nano Lett. 2008, 8, 3293-3297.
    連結:
  19. (21) Frisenda, R.; Tarkuç, S.; Galán, E.; Perrin, M. L.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein J. Nanotechnol. 2015, 6, 1558-1567.
    連結:
  20. (22) González, M. T.; Wu, S.; Huber, R.; van der Molen, S. J.; Schönenberger, C.; Calame, M. Electrical Conductance of Molecular Junctions by a Robust Statistical Analysis. Nano Lett. 2006, 6, 2238-2242.
    連結:
  21. (23) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 1998, 395, 780-783.
    連結:
  22. (24) Xu, B.; Tao, N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221.
    連結:
  23. (25) Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure. Nano Lett. 2011, 11, 1518-1523.
    連結:
  24. (26) Xu, B.; Xiao, X.; Tao, N. J. Measurements of Single-Molecule Electromechanical Properties. J. Am. Chem. Soc. 2003, 125, 16164-16165.
    連結:
  25. (27) Wold, D. J.; Frisbie, C. D. Fabrication and Characterization of Metalb Moleculeb Metal Junctions by Conducting Probe Atomic Force Microscopy. J. Am. Chem. Soc. 2001, 123, 5549-5556.
    連結:
  26. (28) Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J. Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys. Chem. Chem. Phys. 2004, 6, 4330-4337.
    連結:
  27. (29) Nichols, R. J.; Haiss, W.; Higgins, S. J.; Leary, E.; Martin, S.; Bethell, D. The experimental determination of the conductance of single molecules. Phys. Chem. Chem. Phys. 2010, 12, 2801-2815.
    連結:
  28. (30) Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev. 1957, 1, 223-231.
    連結:
  29. (31) Landauer, R. Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 1970, 21, 863-867.
    連結:
  30. (32) Nitzan, A. Electron Transmission through Molecules and Molecular Interfaces. Annu. Rev. Phys. Chem. 2001, 52, 681-750.
    連結:
  31. (33) Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Amine-Gold Linked Single-Molecule Circuits: Experiment and Theory. Nano Lett. 2007, 7, 3477-3482.
    連結:
  32. (34) Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; VenkataramanLatha. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotech. 2009, 4, 230-234.
    連結:
  33. (36) Yan, R.-W.; Jin, X.; Guan, S.-Y.; Zhang, X.-G.; Pang, R.; Tian, Z.-Q.; Wu, D.-Y.; Mao, B.-W. Theoretical Study of Quantum Conductance of Conjugated and Nonconjugated Molecular Wire Junctions. J. Phys. Chem. C 2016, 120, 11820-11830.
    連結:
  34. (37) Brooke, R. J.; Jin, C.; Szumski, D. S.; Nichols, R. J.; Mao, B. W.; Thygesen, K. S.; Schwarzacher, W. Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface. Nano Lett. 2015, 15, 275-280.
    連結:
  35. (38) Taniguchi, M.; Tsutsui, M.; Mogi, R.; Sugawara, T.; Tsuji, Y.; Yoshizawa, K.; Kawai, T. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 2011, 133, 11426-11429.
    連結:
  36. (41) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance. J. Am. Chem. Soc. 2004, 126, 14287-14296.
    連結:
  37. (42) Gao, N.; Liu, H.; Yu, C.; Wang, N.; Zhao, J.; Xie, H. Asymmetric electron transport through a conjugated–saturated hydrocarbon molecular wire. Comput. Theor. Chem. 2011, 963, 55-62.
    連結:
  38. (44) Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533-1554.
    連結:
  39. (45) Tarazona-Vasquez, F.; Balbuena, P. B. Complexation of the Lowest Generation Poly(amidoamine)-NH2 Dendrimers with Metal Ions, Metal Atoms, and Cu(II) Hydrates:  An ab Initio Study. J. Phys. Chem. B 2004, 108, 15992-16001.
    連結:
  40. (46) Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat. Mater. 2012, 11, 872-876.
    連結:
  41. (47) Kiguchi, M.; Miura, S.; Hara, K.; Sawamura, M.; Murakoshi, K. Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes. Appl. Phys. Lett. 2007, 91, 053110.
    連結:
  42. (48) Parameswaran, R.; Widawsky, J. R.; Vázquez, H.; Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. Reliable Formation of Single Molecule Junctions with Air-Stable Diphenylphosphine Linkers. J. Phys. Chem. Lett. 2010, 1, 2114-2119.
    連結:
  43. (49) Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo, M.; Gust, D.; Lindsay, S. Optical Modulation of Molecular Conductance. Nano Lett. 2011, 11, 2709-2714.
    連結:
  44. (50) Makowski, S. J.; Köstler, P.; Schnick, W. Formation of a Hydrogen-Bonded Heptazine Framework by Self-Assembly of Melem into a Hexagonal Channel Structure. Chem. Eur. J. 2012, 18, 3248-3257.
    連結:
  45. (51) Yamada, R.; Kumazawa, H.; Noutoshi, T.; Tanaka, S.; Tada, H. Electrical Conductance of Oligothiophene Molecular Wires. Nano Lett. 2008, 8, 1237-1240.
    連結:
  46. (52) Komoto, Y.; Fujii, S.; Hara, K.; Kiguchi, M. Single Molecular Bridging of Au Nanogap Using Aryl Halide Molecules. J. Phys. Chem. C 2013, 117, 24277-24282.
    連結:
  47. (53) Cheng, Z. L.; Skouta, R.; Vazquez, H.; Widawsky, J. R.; Schneebeli, S. T.; Chen, W.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions. Nature Nanotech. 2011, 6, 353-357.
    連結:
  48. (54) Doña Rodríguez, J. M.; Herrera Melián, J. A.; Pérez Peña, J. Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry. J. Chem. Educ. 2000, 77, 1195-1197.
    連結:
  49. (55) Rica, R. A.; Ziano, R.; Salerno, D.; Mantegazza, F.; Brogioli, D. Thermodynamic Relation between Voltage-Concentration Dependence and Salt Adsorption in Electrochemical Cells. Phys. Rev. Lett. 2012, 109, 156103.
    連結:
  50. (56) Macdonald, D. D.; Scott, A. C.; Wentrcek, P. External Reference Electrodes for Use in High Temperature Aqueous Systems. J. Electrochem. Soc. 1979, 126, 908-911.
    連結:
  51. (57) Cherwell; Simon, F. Walther Nernst. 1864-1941. Biogr. Mem. Fellows R. Soc. 1942, 4, 101.
    連結:
  52. (58) Bratsch, S. G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1-21.
    連結:
  53. (59) Nicholson, R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351-1355.
    連結:
  54. (60) Brown, A. P.; Anson, F. C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal. Chem. 1977, 49, 1589-1595.
    連結:
  55. (61) Tao, N. J. Probing Potential-Tuned Resonant Tunneling through Redox Molecules with Scanning Tunneling Microscopy. Phys. Rev. Lett. 1996, 76, 4066-4069.
    連結:
  56. (62) Zhang, J.; Chi, Q.; Kuznetsov, A. M.; Hansen, A. G.; Wackerbarth, H.; Christensen, H. E. M.; Andersen, J. E. T.; Ulstrup, J. Electronic Properties of Functional Biomolecules at Metal/Aqueous Solution Interfaces. J. Phys. Chem. B 2002, 106, 1131-1152.
    連結:
  57. (64) Hosseini, S.; Madden, C.; Hihath, J.; Guo, S.; Zang, L.; Li, Z. Single-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions. J. Phys. Chem. C 2016, 120, 22646-22654.
    連結:
  58. (65) Li, C.; Stepanenko, V.; Lin, M.-J.; Hong, W.; Würthner, F.; Wandlowski, T. Charge transport through perylene bisimide molecular junctions: An electrochemical approach. Phys. Status Solidi B 2013, 250, 2458-2467.
    連結:
  59. (67) Jiang, X. C.; Seo, M.; Sato, N. Piezoelectric Response to Specific Adsorption of Chloride Ions on Gold Electrode. J. Electrochem. Soc. 1990, 137, 3804-3808.
    連結:
  60. (68) Shchukin, E. D.; Vidensky, I. V.; Petrova, I. V. Luggin's capillary in studying the effect of electrochemical reaction on mechanical properties of solid surfaces. J. Mater. Sci. 1995, 30, 3111-3114.
    連結:
  61. (69) Noviandri , I.; Brown , K. N.; Fleming , D. S.; Gulyas , P. T.; Lay, P. A.; Masters , A. F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple:  A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103, 6713-6722.
    連結:
  62. (70) Guo, S.; Hihath, J.; Díez-Pérez, I.; Tao, N. Measurement and Statistical Analysis of Single-Molecule Current–Voltage Characteristics, Transition Voltage Spectroscopy, and Tunneling Barrier Height. J. Am. Chem. Soc. 2011, 133, 19189-19197.
    連結:
  63. (71) Chen, W.; Widawsky, J. R.; Vázquez, H.; Schneebeli, S. T.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. Highly Conducting π-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes. J. Am. Chem. Soc. 2011, 133, 17160-17163.
    連結:
  64. (72) Huang, C.; Chen, S.; Baruël Ørnsø, K.; Reber, D.; Baghernejad, M.; Fu, Y.; Wandlowski, T.; Decurtins, S.; Hong, W.; Thygesen, K. S.; Liu, S.-X. Controlling Electrical Conductance through a π-Conjugated Cruciform Molecule by Selective Anchoring to Gold Electrodes. Angew. Chem. Int. Ed. 2015, 54, 14304-14307.
    連結:
  65. (7) Batra, A.; Darancet, P.; Chen, Q.; Meisner, J. S.; Widawsky, J. R.; Neaton, J. B.; Nuckolls, C.; Venkataraman, L. Tuning Rectification in Single-Molecular Diodes. Nano Lett. 2013, 13, 6233-6237.
  66. (14) Osorio, H. M.; Catarelli, S.; Cea, P.; Gluyas, J. B.; Hartl, F.; Higgins, S. J.; Leary, E.; Low, P. J.; Martin, S.; Nichols, R. J.; Tory, J.; Ulstrup, J.; Vezzoli, A.; Milan, D. C.; Zeng, Q. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. J. Am. Chem. Soc. 2015, 137, 14319-14328.
  67. (35) Li, J. J.; Bai, M. L.; Chen, Z. B.; Zhou, X. S.; Shi, Z.; Zhang, M.; Ding, S. Y.; Hou, S. M.; Schwarzacher, W.; Nichols, R. J.; Mao, B. W. Giant single-molecule anisotropic magnetoresistance at room temperature. J. Am. Chem. Soc. 2015, 137, 5923-5929.
  68. (39) Leary, E.; Hobenreich, H.; Higgins, S. J.; van Zalinge, H.; Haiss, W.; Nichols, R. J.; Finch, C. M.; Grace, I.; Lambert, C. J.; McGrath, R.; Smerdon, J. Single-molecule solvation-shell sensing. Phys. Rev. Lett. 2009, 102, 086801.
  69. (40) Schmaus, S.; Bagrets, A.; Nahas, Y.; Yamada, T. K.; Bork, A.; Bowen, M.; Beaurepaire, E.; Evers, F.; Wulfhekel, W. Giant magnetoresistance through a single molecule. Nat. Nanotech. 2011, 6, 185-189.
  70. (43) Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. Charge Transport in Single Au
  71. (63) Chappell, S.; Brooke, C.; Nichols, R. J.; Kershaw Cook, L. J.; Halcrow, M.; Ulstrup, J.; Higgins, S. J. Evidence for a hopping mechanism in metal
  72. (66) Makk, P. C. t.; Tomaszewski, D.; Martinek, J.; Balogh, Z. n.; Csonka, S.; Wawrzyniak, M.; Frei, M.; Venkataraman, L.; Halbritter, A. s. Correlation Analysis of Atomic and Single-Molecule Junction Conductance. ACS Nano 2012, 6, 3411-3423.