题名

死海嗜鹽方形古菌氫視紫質II上Arg80和Thr199胺基酸對酸耐受度重要性之研究

并列篇名

A Study on the Importance of Residues Arg80 and Thr199 in Conferring Acid Tolerant Proton Pumping of HmBRII

DOI

10.6342/NTU201802835

作者

周蔚

关键词

細菌氫視紫質 ; 酸耐受度 ; 光電流 ; 氫鍵 ; Bacteriorhodopsin ; Acid-tolerance ; Photocurrent ; Hydrogen Bond

期刊名称

臺灣大學生化科技學系學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

楊啓伸

内容语文

繁體中文

中文摘要

本實驗室在2015 年根據細菌氫視紫質 (bacteriorhodopsin) 的序列分析,提出一個新的BR進化枝 (clade),命名為qR,由Haloarcula marismortui BRII (HmBRII) 和Haloquadratum walsbyi BR (HwBR) 所組成。該研究亦發現qR成員在極酸的環境下仍保有光學穩定性;其中HmBRII則具有已知BR當中,能正常行使氫離子幫浦功能的pH 最低界線;pH 4.0。以模式生物 Halobacterium salinarum 的BR (HsBR) 為例,溶解於pH 5.8以下的環境,會使其無法行使光驅動氫離子幫浦的功能。先前本實驗室由HwBR的蛋白質晶體結構中,發現了由精氨酸82及蘇氨酸201有形成氫鍵,推測此氫鍵能維持位於面向胞外 (extracellular side) 帶正電的beta-loop 結構之穩定性;且此正電特性推測能使其在行使氫離子幫浦功能時,讓原先在蛋白質內部的質子,以協同隔絕方式,抵抗強烈外界氫離子濃度之影響,進而被順利運送到胞外,因而在qR之抗酸性質扮演重要角色。為了進一步證實此氫鍵結構之重要性,本研究使用 HmBRII 作為目標蛋白質,對關鍵氨基酸,即精氨酸80和蘇氨酸199,進行定點突變研究。首先在不同pH 值下測光驅動光電流 (light-driven photocurrent) ,發現突變蛋白質失去在酸性環境下的氫離子幫浦能力。其中,R80E-T199S 雙突變蛋白質功能受挫最顯著,T199S與R80A次之;證據指向T199S 突變的破壞性大。其次,在可見光吸收光譜測量,可發現突變蛋白質特徵吸收峰,對光照後中間態 (M-state) 的比值,較野生型蛋白質低。此顯示突變後影響了蛋白質的整體穩定性,並使其在酸性環境下的特徵吸收峰產生藍移,以T199S 突變蛋白最為顯著,亦顯示胺基酸T199 在此氫鍵系統中的重要性。我們推測T199 相較R80 更重要的可能機制之一,是源由自T199 距BR上保守的質子釋出基團 (proton releasing group) 較近,潛在形成更多原子間作用力,因此影響較為明顯。

英文摘要

Based on phylogenetic analysis of bacteriorhodopsin (BR) sequences, a novel clade of BRs has been proposed by our lab, named qR, consisting of Haloarcula marismortui BRII (HmBRII) and Haloquadratum walsbyi BR (HwBR). It was characterized that both qR members possessed optical stability over a wide range of pH, especially in the acidic region, while HmBRII had a wider functional range toward lower pH (4.0) than any other BR ever observed including Halobacterium salinarum BR (HsBR), and HmBRI. From the crystal structure of HwBR, a unique BC-loop cap structure stabilized by arginine-threonine hydrogen bond was identified. To further explore the important residues or structures in qR, HmBRII was used as the subject to conduct site-directed mutagenesis study of the critical residues, namely, arginine 80 and threonine 199. In this study, ITO-based photocurrent measurements show that mutant proteins have a neutral shifted reversal point, and lose the ability to generate proton pumping signal that the wild type HmBRII possesses at strong acidic pH, R80E-T199S double mutant having the largest impact, followed by T199S and R80A mutant. From UV-Vis spectrum measurements, it was found that mutant proteins are less stable at low pH as a lower ground state absorbance to M-state absorbance ratio was observed along with a larger shift in maximum absorbance. Furthermore, T199S mutant was found to have a larger maximum absorbance blue shift under acidic pH than any other mutant protein. Thus by demonstrating the importance of the R80-T199 hydrogen bond network in the acid resistance of HmBRII protein, we reinforce the significance of the qR grouping and its uniqueness. In addition, the importance of T199 residue is discovered to be more crucial, possibly due to its proximity to the proton releasing group, and other potential interactions.

主题分类 生命科學院 > 生化科技學系
生物農學 > 生物科學
参考文献
  1. 1 Robertson, C. E., Harris, J. K., Spear, J. R. & Pace, N. R. Phylogenetic diversity and ecology of environmental Archaea. Curr Opin Microbiol 8, 638-642 (2005).
  2. 2 Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361, 1007-1022 (2006).
  3. 3 Capes, M. D., DasSarma, P. & DasSarma, S. The core and unique proteins of haloarchaea. BMC Genomics 13, 39 (2012).
  4. 4 Lanyi, J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38, 272-290 (1974).
  5. 5 Larsen, H., Omang, S. & Steensland, H. On the gas vacuoles of the halobacteria. Arch Mikrobiol 59, 197-203 (1967).
  6. 6 Soliman, G., Truper H. Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene Erste Abtleilung Originale C 3, 318-329 (1982).
  7. 7 Ginzburg, M., Sachs, L. & Ginzburg, B. Z. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J Gen Physiol 55, 187-207 (1970).
  8. 8 Oren, A., Ginzburg, M., Ginzburg, B. Z., Hochstein, L. I. & Volcani, B. E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 40, 209-210 (1990).
  9. 9 Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodriguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387-392 (2007).
  10. 10 Stoeckenius, W. Walsby's square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148, 352-360 (1981).
  11. 11 Ng, W. V., Berquist, B. R., Coker, J. A., Capes, M., Wu, T. H., DasSarma, P. & DasSarma, S. Genome sequences of Halobacterium species. Genomics 91, 548-552; author reply 553-544 (2008).
  12. 12 Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37, 407-427 (2013).
  13. 13 Stoeckenius, W. & Rowen, R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol 34, 365-393 (1967).
  14. 14 Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233, 149-152 (1971).
  15. 15 Blaurock, A. E. & Stoeckenius, W. Structure of the purple membrane. Nat New Biol 233, 152-155 (1971).
  16. 16 Inoue, K., Ito, S., Kato, Y., Nomura, Y., Shibata, M., Uchihashi, T., Tsunoda, S. P. & Kandori, H. A natural light-driven inward proton pump. Nat Commun 7, 13415 (2016).
  17. 17 Spudich, J. L., Yang, C. S., Jung, K. H. & Spudich, E. N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-392 (2000).
  18. 18 Rao, V. R. & Oprian, D. D. Activating mutations of rhodopsin and other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 25, 287-314 (1996).
  19. 19 Lanyi, J. K. Bacteriorhodopsin as a model for proton pumps. Nature 375, 461-463 (1995).
  20. 20 Haupts, U., Tittor, J. & Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28, 367-399 (1999).
  21. 21 Varo, G., Needleman, R. & Lanyi, J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry 34, 14500-14507 (1995).
  22. 22 Hoff, W. D., Jung, K. H. & Spudich, J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26, 223-258 (1997).
  23. 23 Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E. & Hegemann, P. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395-2398 (2002).
  24. 24 Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. & Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100, 13940-13945 (2003).
  25. 25 Miesenbock, G. Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27, 731-758 (2011).
  26. 26 Matsui, Y., Sakai, K., Murakami, M., Shiro, Y., Adachi, S., Okumura, H. & Kouyama, T. Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324, 469-481 (2002).
  27. 27 Takeda, K., Matsui, Y., Kamiya, N., Adachi, S., Okumura, H. & Kouyama, T. Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. J Mol Biol 341, 1023-1037 (2004).
  28. 28 Kouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J Mol Biol 335, 531-546 (2004).
  29. 29 Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255-261 (1999).
  30. 30 Hayashi, S., Tajkhorshid, E. & Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys J 83, 1281-1297 (2002).
  31. 31 Lanyi, J. K. Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta 1757, 1012-1018 (2006).
  32. 32 Lanyi, J. K. Bacteriorhodopsin. Annu Rev Physiol 66, 665-688 (2004).
  33. 33 Gunner, M. R., Amin, M., Zhu, X. & Lu, J. Molecular mechanisms for generating transmembrane proton gradients. Biochim Biophys Acta 1827, 892-913 (2013).
  34. 34 Essen, L. O. Halorhodopsin: light-driven ion pumping made simple? Curr Opin Struct Biol 12, 516-522 (2002).
  35. 35 Szundi, I., Swartz, T. E. & Bogomolni, R. A. Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I. Biophys J 80, 469-479 (2001).
  36. 36 Ohtani, H., Kobayashi, T. & Tsuda, M. Branching photocycle of sensory rhodopsin in halobacterium halobium. Biophys J 53, 493-496 (1988).
  37. 37 Sudo, Y., Ihara, K., Kobayashi, S., Suzuki, D., Irieda, H., Kikukawa, T., Kandori, H. & Homma, M. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286, 5967-5976 (2011).
  38. 38 Schafer, G., Engelhard, M. & Muller, V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63, 570-620 (1999).
  39. 39 Racker, E. & Stoeckenius, W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249, 662-663 (1974).
  40. 40 Hsu, M. F., Fu, H. Y., Cai, C. J., Yi, H. P., Yang, C. S. & Wang, A. H. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 290, 29567-29577 (2015).
  41. 41 Zimanyi, L., Varo, G., Chang, M., Ni, B., Needleman, R. & Lanyi, J. K. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31, 8535-8543 (1992).
  42. 42 Fu, H. Y., Yi, H. P., Lu, Y. H. & Yang, C. S. Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol 88, 551-561 (2013).
  43. 43 Chu, L. K., Yen, C. W. & El-Sayed, M. A. Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron 26, 620-626 (2010).
  44. 44 Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., Shannon, P., Chiu, Y., Weng, R. S., Gan, R. R., Hung, P., Date, S. V., Marcotte, E., Hood, L. & Ng, W. V. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14, 2221-2234 (2004).
  45. 45 Fu, H. Y., Lin, Y. C., Chang, Y. N., Tseng, H., Huang, C. C., Liu, K. C., Huang, C. S., Su, C. W., Weng, R. R., Lee, Y. Y., Ng, W. V. & Yang, C. S. A novel six-rhodopsin system in a single archaeon. J Bacteriol 192, 5866-5873 (2010).
  46. 46 Litchfield, C. D. Halophiles. J Ind Microbiol Biotechnol 28, 21-22 (2002).
  47. 47 Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4, 315 (2013).
  48. 48 Hsu, M. F., Yu, T. F., Chou, C. C., Fu, H. Y., Yang, C. S. & Wang, A. H. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 8, e56363 (2013).
  49. 49 Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30 Suppl 1, S162-173 (2009).
  50. 50 Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L. & Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252-258 (2014).
  51. 51 Fu, H. Y., Yi, H. P., Lu, Y. H. & Yang, C. S. Insight into a single halobacterium using a dual‐bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Molecular microbiology 88, 551-561 (2013).
  52. 52 Fu, H.-Y., Chang, Y.-N., Jheng, M.-J. & Yang, C.-S. Ser262 determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Bioscience reports 32, 501-509 (2012).
  53. 53 Tamogami, J., Kikukawa, T., Miyauchi, S., Muneyuki, E. & Kamo, N. A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin. Photochem Photobiol 85, 578-589 (2009).
  54. 54 Ebrey, T. G. & Honig, B. Ultraviolet chromophore transitions in the rhodopsin spectrum. Proc Natl Acad Sci U S A 69, 1897-1899 (1972).
  55. 55 Balashov, S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta 1460, 75-94 (2000).
  56. 56 Kuo, C. L. & Chu, L. K. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin. Bioelectrochemistry 99, 1-7 (2014).
  57. 57 Sharma, A. K., Walsh, D. A., Bapteste, E., Rodriguez-Valera, F., Ford Doolittle, W. & Papke, R. T. Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 7, 79 (2007).