参考文献
|
-
1 Robertson, C. E., Harris, J. K., Spear, J. R. & Pace, N. R. Phylogenetic diversity and ecology of environmental Archaea. Curr Opin Microbiol 8, 638-642 (2005).
-
2 Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361, 1007-1022 (2006).
-
3 Capes, M. D., DasSarma, P. & DasSarma, S. The core and unique proteins of haloarchaea. BMC Genomics 13, 39 (2012).
-
4 Lanyi, J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38, 272-290 (1974).
-
5 Larsen, H., Omang, S. & Steensland, H. On the gas vacuoles of the halobacteria. Arch Mikrobiol 59, 197-203 (1967).
-
6 Soliman, G., Truper H. Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene Erste Abtleilung Originale C 3, 318-329 (1982).
-
7 Ginzburg, M., Sachs, L. & Ginzburg, B. Z. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J Gen Physiol 55, 187-207 (1970).
-
8 Oren, A., Ginzburg, M., Ginzburg, B. Z., Hochstein, L. I. & Volcani, B. E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 40, 209-210 (1990).
-
9 Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodriguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387-392 (2007).
-
10 Stoeckenius, W. Walsby's square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148, 352-360 (1981).
-
11 Ng, W. V., Berquist, B. R., Coker, J. A., Capes, M., Wu, T. H., DasSarma, P. & DasSarma, S. Genome sequences of Halobacterium species. Genomics 91, 548-552; author reply 553-544 (2008).
-
12 Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37, 407-427 (2013).
-
13 Stoeckenius, W. & Rowen, R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol 34, 365-393 (1967).
-
14 Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233, 149-152 (1971).
-
15 Blaurock, A. E. & Stoeckenius, W. Structure of the purple membrane. Nat New Biol 233, 152-155 (1971).
-
16 Inoue, K., Ito, S., Kato, Y., Nomura, Y., Shibata, M., Uchihashi, T., Tsunoda, S. P. & Kandori, H. A natural light-driven inward proton pump. Nat Commun 7, 13415 (2016).
-
17 Spudich, J. L., Yang, C. S., Jung, K. H. & Spudich, E. N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-392 (2000).
-
18 Rao, V. R. & Oprian, D. D. Activating mutations of rhodopsin and other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 25, 287-314 (1996).
-
19 Lanyi, J. K. Bacteriorhodopsin as a model for proton pumps. Nature 375, 461-463 (1995).
-
20 Haupts, U., Tittor, J. & Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28, 367-399 (1999).
-
21 Varo, G., Needleman, R. & Lanyi, J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry 34, 14500-14507 (1995).
-
22 Hoff, W. D., Jung, K. H. & Spudich, J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26, 223-258 (1997).
-
23 Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E. & Hegemann, P. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395-2398 (2002).
-
24 Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. & Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100, 13940-13945 (2003).
-
25 Miesenbock, G. Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27, 731-758 (2011).
-
26 Matsui, Y., Sakai, K., Murakami, M., Shiro, Y., Adachi, S., Okumura, H. & Kouyama, T. Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324, 469-481 (2002).
-
27 Takeda, K., Matsui, Y., Kamiya, N., Adachi, S., Okumura, H. & Kouyama, T. Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. J Mol Biol 341, 1023-1037 (2004).
-
28 Kouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J Mol Biol 335, 531-546 (2004).
-
29 Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255-261 (1999).
-
30 Hayashi, S., Tajkhorshid, E. & Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys J 83, 1281-1297 (2002).
-
31 Lanyi, J. K. Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta 1757, 1012-1018 (2006).
-
32 Lanyi, J. K. Bacteriorhodopsin. Annu Rev Physiol 66, 665-688 (2004).
-
33 Gunner, M. R., Amin, M., Zhu, X. & Lu, J. Molecular mechanisms for generating transmembrane proton gradients. Biochim Biophys Acta 1827, 892-913 (2013).
-
34 Essen, L. O. Halorhodopsin: light-driven ion pumping made simple? Curr Opin Struct Biol 12, 516-522 (2002).
-
35 Szundi, I., Swartz, T. E. & Bogomolni, R. A. Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I. Biophys J 80, 469-479 (2001).
-
36 Ohtani, H., Kobayashi, T. & Tsuda, M. Branching photocycle of sensory rhodopsin in halobacterium halobium. Biophys J 53, 493-496 (1988).
-
37 Sudo, Y., Ihara, K., Kobayashi, S., Suzuki, D., Irieda, H., Kikukawa, T., Kandori, H. & Homma, M. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286, 5967-5976 (2011).
-
38 Schafer, G., Engelhard, M. & Muller, V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63, 570-620 (1999).
-
39 Racker, E. & Stoeckenius, W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249, 662-663 (1974).
-
40 Hsu, M. F., Fu, H. Y., Cai, C. J., Yi, H. P., Yang, C. S. & Wang, A. H. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 290, 29567-29577 (2015).
-
41 Zimanyi, L., Varo, G., Chang, M., Ni, B., Needleman, R. & Lanyi, J. K. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31, 8535-8543 (1992).
-
42 Fu, H. Y., Yi, H. P., Lu, Y. H. & Yang, C. S. Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol 88, 551-561 (2013).
-
43 Chu, L. K., Yen, C. W. & El-Sayed, M. A. Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron 26, 620-626 (2010).
-
44 Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., Shannon, P., Chiu, Y., Weng, R. S., Gan, R. R., Hung, P., Date, S. V., Marcotte, E., Hood, L. & Ng, W. V. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14, 2221-2234 (2004).
-
45 Fu, H. Y., Lin, Y. C., Chang, Y. N., Tseng, H., Huang, C. C., Liu, K. C., Huang, C. S., Su, C. W., Weng, R. R., Lee, Y. Y., Ng, W. V. & Yang, C. S. A novel six-rhodopsin system in a single archaeon. J Bacteriol 192, 5866-5873 (2010).
-
46 Litchfield, C. D. Halophiles. J Ind Microbiol Biotechnol 28, 21-22 (2002).
-
47 Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4, 315 (2013).
-
48 Hsu, M. F., Yu, T. F., Chou, C. C., Fu, H. Y., Yang, C. S. & Wang, A. H. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 8, e56363 (2013).
-
49 Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30 Suppl 1, S162-173 (2009).
-
50 Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L. & Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252-258 (2014).
-
51 Fu, H. Y., Yi, H. P., Lu, Y. H. & Yang, C. S. Insight into a single halobacterium using a dual‐bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Molecular microbiology 88, 551-561 (2013).
-
52 Fu, H.-Y., Chang, Y.-N., Jheng, M.-J. & Yang, C.-S. Ser262 determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Bioscience reports 32, 501-509 (2012).
-
53 Tamogami, J., Kikukawa, T., Miyauchi, S., Muneyuki, E. & Kamo, N. A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin. Photochem Photobiol 85, 578-589 (2009).
-
54 Ebrey, T. G. & Honig, B. Ultraviolet chromophore transitions in the rhodopsin spectrum. Proc Natl Acad Sci U S A 69, 1897-1899 (1972).
-
55 Balashov, S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta 1460, 75-94 (2000).
-
56 Kuo, C. L. & Chu, L. K. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin. Bioelectrochemistry 99, 1-7 (2014).
-
57 Sharma, A. K., Walsh, D. A., Bapteste, E., Rodriguez-Valera, F., Ford Doolittle, W. & Papke, R. T. Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 7, 79 (2007).
|