题名

鋰離子電池模型與電池穿刺熱行為分析

并列篇名

Simulation and Analysis Modeling of Li-Ion Batteries and Battery Thermal Behavior for Nail Penetration Test

DOI

10.6342/NTU201700491

作者

林信昌

关键词

電池模型 ; 等效電路模型 ; 電池老化 ; 穿刺模型 ; 電池油封 ; Dymola ; Equivalent circuit model (ECM) ; Battery ageing ; nail penetration ; Thermal runaway

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

楊宏智

内容语文

繁體中文

中文摘要

由於鋰離子電池本身能量密度大、可攜式、壽命優良等特性,在各大產業皆相當依賴鋰離子電池的發展。例如在電動車的產業,電池更是扮演相當重要的角色,然而在台灣的能源產業上,希望結合電動車的發展,但是一直欠缺與歐洲汽車產業結合之整合能力。有著良好的電池產品,但卻往往不能順利的打進歐洲汽車市場,是相當可惜的,因此,本研究前半部份主要利用在歐洲各大車廠皆有使用之建模軟體Dymola將昇陽公司所研發之40138磷酸鋰鐵電池作分析,建立以Dymola為基礎之電池模組。而此模組內又分為熱電模型及壽命模型兩大部分作分析;電池最重要的特性不外乎為作用時之電池電壓曲線以及放電過程中之溫度變化,因此,本文之熱電模型利用了等效電路模型去模擬出電池在不同電流率之大小的情形下的表現狀況;另外透過壽命模型,分析此磷酸鋰鐵電池在不同充放電深度下之循環充放電之老化行為,並且加以預測,以及透過實際之電池放電實驗、分段放電實驗、循環老化充放電實驗去求取參數及驗證模型之可靠度。 另一方面,鋰離子電池之安全性一直以來都是大家所關心之議題,在一些極端情況下,如電動車遭受撞擊導致電受到擠壓而變形等,皆有可能對人身安全造成非常大之危害,因此本文針對與安全性習習相關之電池穿刺實驗作分析,利用有限元素軟體Ansys workbench建立一熱傳模型,可有效的模擬出電池在穿刺實驗過程中,電池內部短路所造成之熱失控結果,以及整體之溫度變化,並且利用與文獻結果之比較,驗證此熱傳模型之可靠性,並且提出一油封之方式,利用此熱傳模型證實油封電池提升電池整體之安全性之可行性,期待在未來可利用此熱傳模型針對更多鋰離子電池的安全性相關設計做分析。

英文摘要

Lithium ion batteries possess many advantageous characteristics, like of great power density、portable and having excellent cycle life, and are becoming widely used in electric vehicles (EV). In this study we use a numerical analysis software – Dymola, which is famous in Europe automobile industry, to build a lithium iron phosphate (LFP) battery model. The battery model can be combined with other system engineering model like power train system model in Dymola so that it can help us to enter the automobile market in Europe. Generally, the temperature of LFP batteries rises while discharging. If the battery operates beyond the appropriate temperature range, it will lead to a shorter cycle life of the battery. Moreover, as in many applications the cost of batteries pertains to a significant portion of the total cost, battery lifetime is critical for profitability. However some experiments, such as ageing, are expensive and time consuming and cannot be done comprehensively for every control parameters. Hence, this study aims to develop an accurate model to facilitate the analysis of battery performance. Besides, the safety issue for Li-ion battery is also what people always concerned. Nail penetration into a battery pack, resulting in a state of short-circuit and subsequent burning, is likely to occur in electric vehicle collisions. Therefore in this study, a reliable model to describe the thermal behavior for battery nail penetration test is also developed. In our battery model, we choose the equivalent circuit model (ECM) framework which resembles the physical processes of a battery with equivalent circuits such that it reduces the complexity of analysis. To prove the reliability of the model, we analyzes the 40138 LFP batteries produced by PSI by simulating the discharge curve and temperature evolution at different C-rate (0.5C, 1C, 2C,5C) of single cells and battery packs. The simulation results under various operation conditions are validated with experimental results. Moreover, we build an ageing model which can predict the long-term battery cycle behavior based on the short-term discharge cycle test of various depth of discharge. To describe the battery thermal behavior while nail penetrating, we build a heat transfer model by Ansys workbench. This model can capture the temperature evolution trend induced by internal short-circuit and thermal run away. Also, this nail penetration model is validated against a benchmark model for its reliability.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1] Zhang, Jiucai, et al. "Modeling discharge behavior of
    連結:
  2. [2] He, Xiaoling, and Jeffrey W. Hodgson. "Modeling and
    連結:
  3. simulation for hybrid electric vehicles. I. Modeling."
    連結:
  4. IEEE Transactions on Intelligent Transportation Systems
    連結:
  5. 3.4 (2002): 235-243.
    連結:
  6. batteries." Journal of Power Sources 256 (2014):
    連結:
  7. [11] Newman, John, and William Tiedemann. "Porous‐electrode
    連結:
  8. theory with battery applications." AIChE Journal 21.1
    連結:
  9. (1975): 25-41.
    連結:
  10. Energy Balance for Battery Systems," Journal of the
    連結:
  11. Electrochemical Society, 132 (1), A5–A12,1985.
    連結:
  12. Lynch. "A mathematical model for lead-acid batteries."
    連結:
  13. IEEE Transactions on Energy Conversion 7.1 (1992):
    連結:
  14. equivalent circuit models for Li-ion batteries,"
    連結:
  15. Journal of Power Sources, 198 (10), 2012.
    連結:
  16. Technique : An Example Using a Lithium Iron Phosphate
    連結:
  17. [17] 鍾委倫, "磷酸鋰鐵電池模型與電池組之散熱分析", 2016
    連結:
  18. for Li (NiMnCo) O_2 based 18650 lithium-ion batteries."
    連結:
  19. Journal of Power Sources 257 (2014): 325-334.
    連結:
  20. Heat Conduction in Spiral Geometries," Journal of the
    連結:
  21. Electrochemical Society, 150 (10), A1339–A1345, 2003.
    連結:
  22. spirally wound lithium batteries," Journal of the
    連結:
  23. Electrochemical Society, 153 (4), A637–A648, 2006.
    連結:
  24. "Thermal Model of Cylindrical and Prismatic Li-ion
    連結:
  25. (7), A755–A761, 2001.
    連結:
  26. [23] Evans, T. I., and Ralph E. White. "A thermal analysis
    連結:
  27. of a spirally wound battery using a simple mathematical
    連結:
  28. (1989): 2145-2152.
    連結:
  29. polymer coated on cathode." Electrochimica Acta 101
    連結:
  30. of Membrane Science 368.1 (2011): 165-170.
    連結:
  31. [28] Doughty, Daniel H. SAE J2464 “EV & HEV Rechargeable
    連結:
  32. [29] Bernardi, D., E. Pawlikowski, and John Newman. "A
    連結:
  33. general energy balance for battery systems." Journal of
    連結:
  34. [30] Kawai, Tomohiro. "Numerical analysis for internal
    連結:
  35. Abstracts. No. 5. The Electrochemical Society, 2006.
    連結:
  36. [31] Kawai, Tomohiro. "Modeling for Thermal Behavior of
    連結:
  37. Electrochemical Society, 2006.
    連結:
  38. Electrochemical Society 148.7 (2001): A755-A761.
    連結:
  39. cells." Journal of Power Sources 170.2 (2007): 476-489.
    連結:
  40. 155 (2), A164–A171, 2008.
    連結:
  41. of high power automotive batteries by the use of an
    連結:
  42. automated test system," IEEE Transactions on
    連結:
  43. [36] V. Srinivasan, C.Y. Wang, J. Electrochem. Soc. 150
    連結:
  44. (2003) A98eA106.
    連結:
  45. photovoltaic charging of lithium-ion batteries."
    連結:
  46. Journal of Power Sources 195.12 (2010): 3928-3932.
    連結:
  47. transfer. Wiley, 2013.
    連結:
  48. properties." Canola Council of Canada 1 (2001).
    連結:
  49. of lithium-ion battery nail penetration." Journal of
    連結:
  50. Power Sources 251 (2014): 254-263.
    連結:
  51. multicell battery." IEEE Transactions on Energy
  52. Conversion 25.4 (2010): 1133-1141.
  53. [3] http://chem.cersp.com/HXJS/200511/237.html , 2017年1月23
  54. 日引用.
  55. [4] J. Molenda, M. Molenda, "Composite Cathode Material for
  56. Li-Ion Batteries Based on LiFePO_4 System," Metal,
  57. Ceramic and Polymeric Composites for Various Uses, 2011.
  58. [5] Xu, Meng, et al. "Two-dimensional electrochemical–
  59. thermal coupled modeling of cylindrical LiFePO_4
  60. 233-243.
  61. [6] http://lynopower.com/wp-content/uploads/2012/05
  62. /applications.jpg , 2017年1月23日引用.
  63. [7] http://www.killacycle.com/ , 2017年1月23日引用.
  64. [8] http://www.smithelectric.com/ , 2017年1月23日引用.
  65. [9] Simic, Dragan, et al. "Modeling and Validation of
  66. Lithium-Ion Battery based on Electric Vehicle
  67. Measurement. " No. 2014-01-1850. SAE Technical Paper,
  68. 2014.
  69. [10] Gragger, Johannes V., et al. " A full vehicle
  70. simulation of an HEV starter-generator concept with the
  71. smartelectricdrives library. " No. 2007-01-1630.SAE
  72.   Technical Paper, 2007.
  73. [12] D. Bernardi, E. Pawlikowski, J. Newman, "A General
  74. [13] Salameh, Ziyad M., Margaret A. Casacca, and William A.
  75. 93-98.
  76. [14] Randles, John Edward Brough. "Kinetics of rapid
  77. electrode reactions."Discussions of the faraday society
  78. 1 (1947): 11-19.
  79. [15] X. Hu, S. Li, H. Peng, "A comparative study of
  80. [16] R. Jackey, M. Saginaw, P. Sanghvi, J. Gazzarri,
  81. "Battery Model Parameter Estimation Using a Layered
  82. Cell," SAE World Congress, 2013.
  83. [18] Schmalstieg, Johannes, et al. "A holistic aging model
  84. [19] https://www.moneydj.com/KMDJ/Wiki , 2017年1月23日引用
  85. [20] P. M. Gomadam, R. E. White, J.W. Weidner, "Modeling
  86. [21] S. C. Chen, Y.Y. Wang, C.C. Wan., "Thermal analysis of
  87. [22] T. D. Hatchard, D.D. MacNeil, A.Basu, J.R. Dahn,
  88. Cells," Journal of the Electrochemical Society, 148
  89. model." Journal of The Electrochemical Society 136.8
  90. [24] 陳欣志, "鋰電池熱現象之模擬," 國立清華大學化學工程研究
  91. 所博士論文, 2005.
  92. [25] Y. I. Cho, G. Halpert, "Heat dissipation of high rate
  93. Li-SOCl2 primary cells,"Journal of Power Sources, 18,
  94. 109, 1986.
  95. [26] Lin, Chun-Chieh, et al. "Investigation on suppressed
  96. thermal runaway of Li-ion battery by hyper-branched
  97. (2013): 11-17.
  98. [27] Wang, Fu-Ming, et al. "Self-polymerized membrane
  99. derivative of branched additive for internal short
  100. protection of high safety lithium ion battery." Journal
  101. Energy Storage System (RESS) Safety and Abuse Testing
  102. Procedure”. No. 2010-01-1077. SAE Technical Paper,
  103. 2010.
  104. the electrochemical society 132.1 (1985): 5-12.
  105. short-circuit of lithium-ion batteries." Meeting
  106. Lithium-Ion Batteries." Meeting Abstracts. No. 2. The
  107. [32] Hatchard, T. D., et al. "Thermal model of cylindrical
  108. and prismatic lithium-ion cells." Journal of The
  109. [33] Kim, Gi-Heon, Ahmad Pesaran, and Robert Spotnitz. "A
  110. three-dimensional thermal abuse model for lithium-ion
  111. [34] K. Kumaresan, G. Sikha, R. E. White, "Thermal Model for
  112. a Li-Ion Cell," Journal of the Electrochemical Society,
  113. [35] B. Schweighofer, K. M. Raab, G. Brasseur, "A Modeling
  114. Instrumentation and Measurement, 52 (4), 2003.
  115. [37] Gibson, Thomas L., and Nelson A. Kelly. "Solar
  116. [38] Incropera, Frank P., et al. Principles of heat and mass
  117. [39] Przybylski, Roman. "Canola oil: physical and chemical
  118. [40] 黃智聲, "利用電化學法建立鋰電池模組預測模型分析交流阻抗
  119. 頻譜以及並聯之行為與電池安全性設計", 國立台灣大學碩士論
  120. 文2014
  121. [41] Chiu, Kuan-Cheng, et al. "An electrochemical modeling