题名

MiR-PathOgen: 以拓璞資訊方式分析基因與微核醣核酸調控之生物途徑

并列篇名

MiR-PathOgen: An Analytical Algorithm to Characterize Affected Biological Functions from Messenger RNA and MicroRNA by Using Topology Information

DOI

10.6342/NTU.2012.00908

作者

賴宜萍

关键词

生物途徑分析 ; 拓璞結構訊息 ; 微核醣核酸與其目標基因的交互作用 ; 微核醣核酸表現值 ; 基因表現值 ; Pathway analysis ; Topology ; MicroRNA-target interaction ; MicroRNA expression ; mRNA expression

期刊名称

臺灣大學生醫電子與資訊學研究所學位論文

卷期/出版年月

2012年

学位类别

碩士

导师

莊曜宇

内容语文

英文

中文摘要

藉由分析微陣列生物晶片產出的高通量基因體資料,探討生物體內複雜的基因調控機制與癌症機轉,已成為現今基因體醫學研究的主流。由於在生物途徑層次上進行分析較具有生物意義,目前的研究逐漸轉往此方向分析。此外,因為上游基因在生物途徑中的影響層面比在下游的基因來得重要,若能結合拓璞結構訊息,可能可以得到更具有生物意義的結果;然而,此新興方向仍在初始發展階段。另一方面,近年來的研究已知微核醣核酸廣泛地在生物體中扮演關鍵角色,它會藉由抑制其目標基因的表現以調節細胞功能。雖然微核醣核酸與其目標基因的預測資料庫已為數不少,但是結合微核醣核酸進行生物途徑分析的方法卻仍十分缺乏,至今尚無文獻發表將微核醣核酸與其目標基因的交互作用直接加入生物途徑共同進行分析的方法。因此,我們希望可以將微核醣核酸和基因的表現變化值結合拓璞結構訊息,在系統的層面進行生物途徑分析,進一步瞭解癌症在生物體內的運作機制。 於此篇碩士論文中,我們提出一個新的方法,將微核醣核酸的調節加入生物途徑中,新建一個包含微核醣核酸的生物途徑資料庫,進行基因體資料分析。此方法主要由三個演算法組成,分別為過度表現分析、影響因子分析,以及系統信任度三種方法,使用MATLABR軟體建構,並命名為MiR-PathOgen。我們首先收集來自PID和BioCarta的生物途徑資訊,加入來自miRecords 和TarBase經過生物驗證的微核醣核酸與其調控基因的資訊,重建結合微核醣核酸的生物途徑資料庫。接著將有差異表現的微核醣核酸與基因以及它們的表現值輸入資料庫後,採用超幾何分布進行過度表現分析和應用拓璞結構與表現值進行影響因子分析,最後再將兩者結果使用系統信任度結合,得到一個整體分數用來作為排名依歸,進而找出顯著相關的生物途徑。 在此研究中,影響因子分析的模擬結果證實此方法可以挑選出受到較上游的微核醣核酸或基因調控與較有訊息傳遞連結的生物途徑;系統信任度顯示此結合方法可以同時考慮每一條生物途徑在過度表現分析與影響因子分析下的結果。分析實際癌症病患微陣列晶片資料的結果顯示我們的方法可以找到受到一群微核醣核酸與基因正向或負向調控的相關生物途徑,而這些生物途徑已於文獻中被證實與該人類癌症的相關性。由於同時考慮了微核醣核酸與基因在給定癌症上扮演的角色,MiR-PathOgen 具有較佳的可信賴性與可再現性,是一個不僅在基因層次同時也在微核醣核酸層次進行基因體資料分析的演算法。我們期望未來MiR-PathOgen可以應用在與癌症相關的生物途徑分析,進一步瞭解生物系統內複雜的基因調控機制與癌症機轉。

英文摘要

Pathway analysis of high-throughput genomic data generated by microarray has been increasingly prevalent in exploring the underlying molecular mechanisms and complex cancer progression of biological systems. Considering that the upstream genes play more important roles than downstream genes do in signaling pathways, utilization of topology information may identify pathways that are more related to conditions being studied, but it is still in early stage and rather incomplete. In addition, even though microRNA has been reported to play a key role in diverse cellular functions by down-regulating its target mRNAs at the post-transcriptional level, only little research in pathway analysis incorporated with microRNA. Therefore, the purpose of this study is to improve the pathway analysis for a better understanding of underlying mechanisms by integrating microRNA and mRNA microarray profiling in a topology-based approach at the systems biology level. An improved approach, named MiR-PathOgen, is developed as a MATLABR-based application. MiR-PathOgen consists of a reconstructed miRNA-integrated pathway database and three algorithms, including an over-representation analysis, an impact factor method and the reliability of a system. To construct a microRNA-integrated pathway database, we first collected pathway information from BioCarta and pathway interaction database, as well as a list of validated microRNA-gene interactions from miRecords and TarBase. Next, over-representation analysis was executed using hypergeometric distribution. The impact factor method incorporated several biological factors, such as regulatory relationship, gene positions and expression changes. Lastly, the results of above analyses were combined by concepts of the reliability of a system to conduct an overall score for pathway rankings. The simulation results of the impact factor analysis illustrated that this topology-based method was able to robustly report the pathways in condition of connected or central distributed microRNAs and genes with higher ranking. Also, the combination of the over-representation analysis and the impact factor analysis at the system level performed a reliable systematical transformation to identify significant pathways. Furthermore, applying our algorithms in three human datasets suggested that MiR-PathOgen is capable of identifying microRNA and gene activated pathways that were related to a given condition being studied. In summary, MiR-PathOgen is a reliable and reproducible pathway analysis tool to concurrently analyze microRNA and mRNA genomic data, which is beneficial for a better understanding of complex biological systems.

主题分类 基礎與應用科學 > 資訊科學
醫藥衛生 > 醫藥總論
電機資訊學院 > 生醫電子與資訊學研究所
参考文献
  1. 2. Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235): 467-470.
    連結:
  2. 3. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP et al. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98(26): 15149-15154.
    連結:
  3. 6. Wang K, Li MY, Bucan M. 2007. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 81(6): 1278-1283.
    連結:
  4. 7. David P B. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116(2): 281-297.
    連結:
  5. 8. Filipowicz W, Bhattacharyya SN, Sonenberg N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2): 102-114.
    連結:
  6. 9. Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5): 843-854.
    連結:
  7. 10. Zhang R, Su B. 2009. Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution. Journal of Genetics and Genomics 36(1): 1-6.
    連結:
  8. 11. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34(suppl 1): D140-D144.
    連結:
  9. 12. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K et al. 2009. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research 37(suppl 2): W273-W276.
    連結:
  10. 13. Lewis BP, Burge CB, Bartel DP. 2005. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell 120(1): 15-20.
    連結:
  11. 16. Wang X. 2008. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6): 1012-1017.
    連結:
  12. 17. Nam S, Kim B, Shin S, Lee S. 2008. miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Research 36(suppl 1): D159-D164.
    連結:
  13. 18. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. 2009. DIANA-mirPath: Integrating human and mouse microRNAs in pathways. Bioinformatics 25(15): 1991-1993.
    連結:
  14. 19. Khatri P, Sirota M, Butte AJ. 2012. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS computational biology 8(2): e1002375.
    連結:
  15. 20. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28(1): 27-30.
    連結:
  16. 23. Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L et al. 2005. Reactome: a knowledgebase of biological pathways. Nucleic Acids Research 33(suppl 1): D428-D432.
    連結:
  17. 24. Mi H, Guo N, Kejariwal A, Thomas PD. 2007. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Research 35(suppl 1): D247-D252.
    連結:
  18. 25. Karp PD, Riley M, Paley SM, Pellegrini-Toole A. 2002. The MetaCyc Database. Nucleic Acids Res 30(1): 59-61.
    連結:
  19. 26. Thomas PD, Campbell MJ, Kejariwal A, Mi HY, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. 2003. PANTHER: A library of protein families and subfamilies indexed by function. Genome Research 13(9): 2129-2141.
    連結:
  20. 27. Huerta AM, Salgado H, Thieffry D, Collado-Vides J. 1998. RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Research 26(1): 55-59.
    連結:
  21. 28. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. 2009. PID: the Pathway Interaction Database. Nucleic Acids Research 37(suppl 1): D674-D679.
    連結:
  22. 29. Khatri P, Draghici S. 2005. Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21(18): 3587-3595.
    連結:
  23. 32. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1): 19-20.
    連結:
  24. 35. Chung H-J, Kim M, Park CH, Kim J, Kim JH. 2004. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics. Nucleic Acids Research 32(suppl 2): W460-W464.
    連結:
  25. 36. Cavalieri D, Castagnini C, Toti S, Maciag K, Kelder T, Gambineri L, Angioli S, Dolara P. 2007. Eu.Gene Analyzer a tool for integrating gene expression data with pathway databases. Bioinformatics 23(19): 2631-2632.
    連結:
  26. 37. Holford M, Li N, Nadkarni P, Zhao H. 2005. VitaPad: visualization tools for the analysis of pathway data. Bioinformatics 21(8): 1596-1602.
    連結:
  27. 38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13(11): 2498-2504.
    連結:
  28. 39. Goesmann A, Haubrock M, Meyer F, Kalinowski J, Giegerich R. 2002. PathFinder: reconstruction and dynamic visualization of metabolic pathways. Bioinformatics 18(1): 124-129.
    連結:
  29. 40. Toyoda T, Mochizuki Y, Konagaya A. 2003. GSCope: a clipped fisheye viewer effective for highly complicated biomolecular network graphs. Bioinformatics 19(3): 437-438.
    連結:
  30. 41. Nikitin A, Egorov S, Daraselia N, Mazo I. 2003. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19(16): 2155-2157.
    連結:
  31. 42. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. 2007. A systems biology approach for pathway level analysis. Genome Research 17(10): 000.
    連結:
  32. 44. Greenblum S, Efroni S, Schaefer C, Buetow K. 2011. The PathOlogist: an automated tool for pathway-centric analysis. BMC Bioinformatics 12(1): 133.
    連結:
  33. 45. Fang Z, Tian W, Ji H. 2012. A network-based gene-weighting approach for pathway analysis. Cell research 22(3): 565-580.
    連結:
  34. 46. Xiao FF, Zuo ZX, Cai GS, Kang SL, Gao XL, Li TB. 2009. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Research 37: D105-D110.
    連結:
  35. 47. Sethupathy P, Corda B, Hatzigeorgiou AG. 2006. TarBase: A comprehensive database of experimentally supported animal microRNA targets. Rna-a Publication of the Rna Society 12(2): 192-197.
    連結:
  36. 48. Siegrist K. 1988. Reliability of Systems with Markov Transfer of Control. Ieee T Software Eng 14(7): 1049-1053.
    連結:
  37. 49. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F, Lacombe C, Bouscary D. 2002. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 21(43): 6587-6597.
    連結:
  38. 50. Cirstea D, Hideshima T, Rodig S, Santo L, Pozzi S, Vallet S, Ikeda H, Perrone G, Gorgun G, Patel K et al. 2010. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther 9(4): 963-975.
    連結:
  39. 51. Yang Y, Zhou X, Xiao M, Hong Z, Gong Q, Jiang L, Zhou J. 2010. Discovery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multiple myeloma cells in vitro. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban 30(6): 734-740.
    連結:
  40. 52. Baumann P, Schneider L, Mandl-Weber S, Oduncu F, Schmidmaier R. 2012. Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anti-Cancer Drug 23(1): 131-138.
    連結:
  41. 53. Kiss TL, Lipton JH, Bergsagel DE, Meharchand JM, Jamal N, Minden MD, Messner HA. 1994. Determination of IL6, IL1, and IL4 in the plasma of patients with multiple myeloma. Leukemia & lymphoma 14(3-4): 335-340.
    連結:
  42. 54. Dinarello CA. 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14): 3720-3732.
    連結:
  43. 55. Borset M, Seidel C, Hjorth-Hansen H, Waage A, Sundan A. 1999. The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies. Leukemia & lymphoma 32(3-4): 249-256.
    連結:
  44. 56. Derksen PW, de Gorter DJ, Meijer HP, Bende RJ, van Dijk M, Lokhorst HM, Bloem AC, Spaargaren M, Pals ST. 2003. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17(4): 764-774.
    連結:
  45. 57. Mahtouk K, Tjin EPM, Spaargaren M, Pals ST. 2010. The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Bba-Rev Cancer 1806(2): 208-219.
    連結:
  46. 58. Mahtouk K, Moreaux J, Hose D, Reme T, Meissner T, Jourdan M, Rossi JF, Pals ST, Goldschmidt H, Klein B. 2010. Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. Bmc Cancer 10.
    連結:
  47. 59. Recher C, Ysebaert L, Beyne-Rauzy O, Mas WMD, Ruidavets JB, Cariven P, Demur C, Payrastre B, Laurent G, Racaud-Sultan C. 2004. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Research 64(9): 3191-3197.
    連結:
  48. 60. Despeaux M, Chicanne G, Rouer E, De Toni-Costes F, Bertrand J, Mansat-De Mas V, Vergnolle N, Eaves C, Payrastre B, Girault J-A et al. 2012. Focal Adhesion Kinase Splice Variants Maintain Primitive Acute Myeloid Leukemia Cells Through Altered Wnt Signaling. STEM CELLS: N/A-N/A.
    連結:
  49. 61. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. 2000. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature immunology 1(1): 47-53.
    連結:
  50. 62. Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, Lee AM, Lister TA, Gribben JG. 2009. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18): 3909-3916.
    連結:
  51. 63. Tanaka-Harada Y, Kawakami M, Oka Y, Tsuboi A, Katagiri T, Elisseeva OA, Nishida S, Shirakata T, Hosen N, Fujiki F et al. 2010. Biased usage of BV gene families of T-cell receptors of WT1 (Wilms' tumor gene)-specific CD8+ T cells in patients with myeloid malignancies. Cancer Sci 101(3): 594-600.
    連結:
  52. 64. Xu DW, Gruber A, Peterson C, Pisa P. 1998. Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Brit J Haematol 102(5): 1367-1375.
    連結:
  53. 65. Roth A, Vercauteren S, Sutherland HJ, Landsorp PM. 2003. Telomerase is limiting the growth of acute myeloid leukemia cells. Leukemia 17(12): 2410-2417.
    連結:
  54. 67.Zhang Y, Sugimoto Y, Kulp SK, Farrar WB, Brueggemeier RW, Lin YC. 1998. Estrogen-induced keratinocyte growth factor mRNA expression in normal and cancerous human breast cells. Oncology reports 5(3): 577-583.
    連結:
  55. 68.Tamaru N, Hishikawa Y, Ejima K, Nagasue N, Inoue S, Muramatsu M, Hayashi T, Koji T. 2004. Estrogen receptor-associated expression of keratinocyte growth factor and its possible role in the inhibition of apoptosis in human breast cancer. Lab Invest 84(11): 1460-1471.
    連結:
  56. 70. Vaught D, Brantley-Sieders DM, Chen J. 2008. Eph receptors in breast cancer: roles in tumor promotion and tumor suppression. Breast cancer research : BCR 10(6): 217.
    連結:
  57. 71. Fu DY, Wang ZM, Wang BL, Chen L, Yang WT, Shen ZZ, Huang W, Shao ZM. 2010. Frequent epigenetic inactivation of the receptor tyrosine kinase EphA5 by promoter methylation in human breast cancer. Human pathology 41(1): 48-58.
    連結:
  58. 72. Kaenel P, Mosimann M, Andres AC. 2012. The multifaceted roles of Eph-ephrin signaling in breast cancer. Cell adhesion & migration 6(2).
    連結:
  59. 73. Strom A, Arai N, Leers J, Gustafsson JA. 2000. The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17beta-estradiol on breast cancer cell lines. Oncogene 19(51): 5951-5953.
    連結:
  60. 74. Muller P, Kietz S, Gustafsson JA, Strom A. 2002. The anti-estrogenic effect of all-trans-retinoic acid on the breast cancer cell line MCF-7 is dependent on HES-1 expression. J Biol Chem 277(32): 28376-28379.
    連結:
  61. 75. Muller P, Merrell KW, Crofts JD, Ronnlund C, Lin CY, Gustafsson JA, Strom A. 2009. Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3 ' distal element. J Endocrinol 200(3): 311-319.
    連結:
  62. 76. Thomas R, Gohlke JM, Stopper GF, Parham FM, Portier CJ. 2009. Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure. Genome Biology 10(4).
    連結:
  63. 77. Hung JH, Whitfield TW, Yang TH, Hu ZJ, Weng ZP, DeLisi C. 2010. Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biology 11(2).
    連結:
  64. 1. Lander ES Linton LM Birren B Nusbaum C Zody MC Baldwin J Devon K Dewar K Doyle M FitzHugh W et al. 2001. Initial sequencing and analysis of the human genome. Nature 409(6822): 860-921.
  65. 4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al. 2000. Gene Ontology: tool for the unification of biology. Nat Genet 25(1): 25-29.
  66. 5. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. 2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4(5): P3.
  67. 14. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al. 2005. Combinatorial microRNA target predictions. Nat Genet 37(5): 495-500.
  68. 15. Enright A, John B, Gaul U, Tuschl T, Sander C, Marks D. 2003. MicroRNA targets in Drosophila. Genome Biology 5(1): R1.
  69. 21. http://www.biocarta.com
  70. 22. Romero P, Wagg J, Green M, Kaiser D, Krummenacker M, Karp P. 2004. Computational prediction of human metabolic pathways from the complete human genome. Genome Biology 6(1): R2.
  71. 30. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. 2005. Discovering statistically significant pathways in expression profiling studies. Proceedings of the National Academy of Sciences of the United States of America 102(38): 13544-13549.
  72. 31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al. 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102(43): 15545-15550.
  73. 33. Doniger S, Salomonis N, Dahlquist K, Vranizan K, Lawlor S, Conklin B. 2003. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology 4(1): R7.
  74. 34. Pan D, Sun N, Cheung K-H, Guan Z, Ma L, Holford M, Deng X, Zhao H. 2003. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis. BMC Bioinformatics 4(1): 56.
  75. 43. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, Kim CJ, Kusanovic JP, Romero R. 2009. A novel signaling pathway impact analysis. Bioinformatics 25(1): 75-82.
  76. 66. Hartmann U, Brummendorf TH, Balabanov S, Thiede C, Illme T, Schaich M. 2005. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica 90(3): 307-316.
  77. 69. CHANG H-L, SUGIMOTO Y, LIU S, WANG L-S, HUANG Y-W, YE W, LIN YC. 2009. Keratinocyte Growth Factor (KGF) Regulates Estrogen Receptor-α (ER-α) Expression and Cell Apoptosis via Phosphatidylinositol 3-kinase (PI3K)/Akt Pathway in Human Breast Cancer Cells. Anticancer Research 29(8): 3195-3205.