题名

沉浸於不同液體中的梁之撓曲振動共振頻率

并列篇名

Study of resonant frequencies of flexural vibration of beams immersed in various fluids

DOI

10.6342/NTU201602270

作者

戴源志

关键词

一階剪切梁理論 ; 三階剪切梁理論 ; 動態梁表示式 ; 電腦模擬 ; Timoshenko beam theory ; Reddy beam theory ; dynamic vibration of beam ; computed simulation

期刊名称

臺灣大學應用力學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張正憲

内容语文

繁體中文

中文摘要

本文以不同梁理論,推導沉浸液體中的梁之撓曲振動自然振模表示式與自然振頻。進而探討改變結構長厚比參數、無因次的材料常數比,從不同梁理論所得到的之間差異。以及沉浸不同液體環境下,從低自然振模到高自然振模,剪切梁理論和古典梁理論之間的自然振頻差異。最後引入有限元素軟體計算梁沉浸液體內的自然振動頻率,並探討模擬方法與各種梁理論之間差異。 在結果呈現長厚比、材料常數比和模態數是主要影響剪切梁理論和古典梁理論沉浸在液體中自然振動頻率比的之間差異性的關鍵因子。在液體環境對梁理論的影響程度發現與材料常數比率有很大的因數,越低材料常數比時液體的黏滯性影響成分大;在越高材料常數比時液體的密度影響成分大。其中在材料常數比為0.1的時候,此時液體的密度與黏滯性影響性皆最小的時候,所以頻率比的差異影響這時候僅只有長厚比與模態高低所影響著。最後在電腦模擬上,顯示三維模型上梁側面的水力負載間接影響梁的自然振頻。

英文摘要

This thesis studies the natural frequencies and mode shapes of flexural vibraion of beams immersed in fluids using different beam theories. Next, this work is devoted to investigating the effects of aspect ratio and material coefficient ratio(G/E) on the differences of resonant frequencies obtained from different models based on Euler-Bernoulli, Timoshenko, and Reddy beam theory. In addition, there is a discussion on the resonant frequency differences between shear beam theory and classical beam, which are immersed in air, water, and glycerin. Finally, the simulated results obtained by FEM software have been compared with the results of previous studies. The results of this thesis conclude that aspect ratio, material coefficient ratio ,and mode numder are the essential factors of the differences between shear beam theory and classical beam theory. Specially, the ratio G/E ratio has the great effect on the influence of by fluids. The viscosity of fluids plays an important role on the influence of natural frequencies predicted by different beam theories when the G/E ratio of beams is small, whereas the difference of natural frequencies obtained by different beam theories is influenced by the density of fluids mainly as the G/E ratio becomes large. Besides, the result points out that the natural frequency of Timoshenko beam theory would be same as one of Reddy beam theory even if the fluids are different while the G/E ratio of beams is equal to 0.1. Finally, the fact that the hydrodynamic loading due to viscosity acting on sides of thick beam affects the natural frequencies of beams has been observed from the FEM simulations.

主题分类 基礎與應用科學 > 物理
工學院 > 應用力學研究所
参考文献
  1. [2] D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley, &V. Elings. (1996). "Short cantilevers for atomic force microscopy," Review of Scientific Instruments, 67(10), pp. 3583-3590.
    連結:
  2. [5] T. Thundat, E. A. Wachter, S. L. Sharp, &R. J. Warmack. (1995). "Detection of mercury vapor using resonating microcantilevers," Applied Physics Letters, 66(13), pp. 1695-1697.
    連結:
  3. [6] C. Ziegler. (2004). "Cantilever-based biosensors," Analytical and bioanalytical chemistry, 379(7-8), pp. 946-959.
    連結:
  4. [7] S. P. Timoshenko. (1921). "On the correction for shear of the differential equation for transverse vibrations of prismatic bars," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(245), pp. 744-746.
    連結:
  5. [9] M. Levinson. (1981). "A new rectangular beam theory," Journal of Sound and Vibration, 74(1), pp. 81-87.
    連結:
  6. [10] D. L. Thomas. (1984). "Vibration of a rectangular beam with a deforming cross-section," Journal of Sound and Vibration, 95(3), pp. 397-404.
    連結:
  7. [12] J. N. Reddy. (1984). "A Simple Higher-Order Theory for Laminated Composite Plates," Journal of Applied Mechanics, 51(4), pp. 745-752.
    連結:
  8. [13] P. R. Heyliger, &J. N. Reddy. (1988). "A higher order beam finite element for bending and vibration problems," Journal of Sound and Vibration, 126(2), pp. 309-326.
    連結:
  9. [14] J. N. Reddy, C. M. Wang, &K. H. Lee. (1997). "Relationships between bending solutions of classical and shear deformation beam theories," International Journal of Solids and Structures, 34(26), pp. 3373-3384.
    連結:
  10. [15] M. Eisenberger. (2003). "Dynamic stiness vibration analysis using a high-order beam model," International Journal for Numerical Methods in Engineering, 57, pp. 1603-1614.
    連結:
  11. [16] J. N. Reddy. (2007). "Nonlocal theories for bending, buckling and vibration of beams," International Journal of Engineering Science, 45(2–8), pp. 288-307.
    連結:
  12. [17] E. O. Tuck. (1969). "Calculation of unsteady flows due to small motions of cylinders in a viscous fluid," Journal of Engineering Mathematics, 3(1), pp. 29-44.
    連結:
  13. [18] J. E. Sader. (1998). "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope," Journal of Applied Physics, 84(1), pp. 64-76.
    連結:
  14. [19] C. A. Van Eysden, &J. E. Sader. (2006). "Small amplitude oscillations of a flexible thin blade in a viscous fluid: Exact analytical solution," Physics of Fluids, 18(12), 123102.
    連結:
  15. [20] C. A. Van Eysden, &J. E. Sader. (2007). "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order," Journal of Applied Physics, 101(4), 044908.
    連結:
  16. [21] M. K. Ghatkesar, T. Braun, V. Barwich, J.-P. Ramseyer, C. Gerber, M. Hegner, &H. P. Lang. (2008). "Resonating modes of vibrating microcantilevers in liquid," Applied Physics Letters, 92(4), 043106.
    連結:
  17. [22] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, &J.-P. Aimé. (2005). "Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids," Journal of Applied Physics, 97(7), 074907.
    連結:
  18. [23] F. Lochon, I. Dufour, &D. Rebière. (2005). "An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions," Sensors and Actuators B: Chemical, 108(1–2), pp. 979-985.
    連結:
  19. [24] M. K. Ghatkesar, V. Barwich, T. Braun, J.-P. Ramseyer, C. Gerber, M. Hegner, H. P. Lang, U. Drechsler, &M. Despont. (2007). "Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers," Nanotechnology, 18(44), 445502.
    連結:
  20. [25] C. Vančura, Y. Li, J. Lichtenberg, K.-U. Kirstein, A. Hierlemann, &F. Josse. (2007). "Liquid-Phase Chemical and Biochemical Detection Using Fully Integrated Magnetically Actuated Complementary Metal Oxide Semiconductor Resonant Cantilever Sensor Systems," Analytical Chemistry, 79(4), pp. 1646-1654.
    連結:
  21. [26] M. Habibnejad Korayem, H. Jiryaei Sharahi, &A. Habibnejad Korayem. (2012). "Comparison of frequency response of atomic force microscopy cantilevers under tip-sample interaction in air and liquids," Scientia Iranica, 19(1), pp. 106-112.
    連結:
  22. [28] 陳⿬璋,(2015). "沉浸在不同流體之剪切變形梁共振頻率的一階及三階理論研究," 碩士論文,工學院應用力學研究所,國立臺灣大學,台北市.
    連結:
  23. [29] J. Prescott. (1942). "LXXIX. Elastic waves and vibrations of thin rods," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(225), pp. 703-754.
    連結:
  24. [30] C. M. Wang, J. N. Reddy, &K. H. Lee. (2000). "Shear Deformable Beams and Plates : Relationships with Classical Solutions, " New York, GB: Elsevier Science.
    連結:
  25. [33] F.-J. Elmer, &M. Dreier. (1997). "Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium," Journal of Applied Physics, 81(12), pp. 7709-7714.
    連結:
  26. [1] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, &V. Elings. (1994). "Tapping mode atomic force microscopy in liquids," Applied Physics Letters, 64(13), pp. 1738-1740.
  27. [3] M. Hegner, &Y. Arntz. (2004). "Advanced Biosensing Using Micromechanical Cantilever Arrays," in Atomic Force Microscopy: Biomedical Methods and Applications, P. C. Braga and D. Ricci, Eds., Totowa, NJ: Humana Press, pp. 39-49.
  28. [4] J. Fritz, M. Baller, H. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, &J. Gimzewski. (2000). "Translating biomolecular recognition into nanomechanics," Science, 288(5464), pp. 316-318.
  29. [8] G. Jemielita. (1975). "Technical theory of plates with moderate thickness," Engng.Trans., 23, pp. 483-499.
  30. [11] W. Bickford. (1982). "A consistent higher order beam theory," Developments in Theoretical and Applied Mechanics, 11, pp. 137-150.
  31. [27] E. D. Cooper. (2012). "Particle Mechanics," in Mathematical Mechanics : From Particle to Muscle, 77, World Scientific, pp. 145-145.
  32. [31] S. J. Tsai. (2002). "Power Transformer Partial Discharge (PD) Acoustic Signal Detection using Fiber Sensors and Wavelet Analysis, Modeling, and Simulation," Master, Electrical Engineering Virginia Tech, Blacksburg, Virginia.
  33. [32] N. Elabbasi. (2014). Natural Frequencies of Immersed Beams. Available: https://www.comsol.com/blogs/natural-frequencies-immersed-beams/
  34. [34] M. Gad-el Hak, &P. R. Bandyopadhyay. (1995). "Questions in fluid mechanics," Journal of Fluids Engineering, 117(1), pp. 3-5.