题名

沼氣發電對溫室氣體的減量及排放與環境衝擊之評估

并列篇名

Assessment of Power Generation from Biogas on Greenhouse Gas Emissions and Environment Impact

DOI

10.6342/NTU201602304

作者

徐瑋勵

关键词

燃氣渦輪機 ; 往復式發電機 ; 沼氣發電 ; 生命週期評估 ; 溫室氣體減排 ; 厭氧消化 ; gas turbine ; reciprcal engine ; power generation from biogas ; anaerobic digestion ; life cycle assessment ; greenhouse gas emissions

期刊名称

臺灣大學環境工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張慶源

内容语文

繁體中文

中文摘要

沼氣定義為再生能源中生質能源的一種氣態燃料,可用於產熱及發電。完善的利用過剩沼氣可以有效降低沼氣中CH4、CO2等溫室氣體直接排放所造成的衝擊,並能有效減少能資源的浪費。本研究以國內最大的污泥厭氧處理廠-八里汙水處理廠為基礎進行污泥及廚餘厭氧處理產生沼氣發電之生命週期評估以探討其可行性。研究內容主要分為兩部分。第一部分為利用燃氣渦輪機及往復式發電機燃燒沼氣發電,分析排放廢氣組成及發電機的性質,並建立第二部分生命週期評估所需要之參數。第二部分是利用生命週期評估分析,進行八里污水處理場之污泥厭氧消化產生沼氣至發電的探討,並設立以廚餘進行厭氧消化產生沼氣至發電的比較衝擊分析。最後根據發電機的燃燒排放,分析沼氣發電與化石能源發電之CO2的排放比較。 第一部份的結果顯示,當輸出功率超過20 kw時,傳統往復式沼氣發電機的NOx排放濃度約為燃氣渦輪機的20倍;輸出功率越高,濃度差異越大。每一度電對於氣體排放控制及燃燒效率的比較上,往復式發電機CO的排放量為4.8×10-2 kg、NOx為1.92×10-2、燃燒效率(combustion efficiency, CE)為0.97;燃氣渦輪機CO的排放量為4.1×10-3 kg、NOx為1.63×10-3 kg、CE為0.99。燃氣渦輪機在CO及NOx的排放量約為往復式發電機的十分之一。 第二部分的結果顯示,沼氣發電於整體生命週期的分析以厭氧消化的程序影響衝擊最大。例如,污泥厭氧消化及燃氣渦輪機燃燒沼氣發電兩程序之衝擊程度分別為10-3 pt及9.81×10-5 pt,廚餘作為厭氧消化的原料比起污泥產生的效益更好,因其有機質含量高,產出沼氣量大使其利用厭氧消化產沼氣發電對環境衝擊為以污泥作為原料的一半。以廚餘及污泥為原料產生沼氣發電之環境衝擊程度分別為5.6×10-4 pt及1.11×10-3 pt。不考慮厭氧消化產生沼氣之二氧化碳排放,使用沼氣發電比起傳統化石能源發電對於二氧化碳排放的比較上,以燃氣渦輪機作為沼氣發電的基準,計入前處理設備(如乾燥機及壓縮機)比之能源投入,每發一度電會排放266 g CO2 eq,比起煤平均至少可以減少734 g CO2 eq;天然氣可減少203 g CO2 eq;石油可減少574 g CO2 eq。以燃氣渦輪機作為沼氣發電替代台灣綜合電力及化石燃料電力,至少可以分別降低51.25%及67%的二氧化碳排放量。故沼氣發電的應用可有效解決目前本國過剩沼氣的處理問題,更可以作為化石燃料的替代能源,有效減少溫室氣體排放的影響。

英文摘要

Biogas is one of gaseous fuel biomass energies in renewable resourcse. It can be used for heating and power generation. Improvement of the use of surplus biogas can effectively decrease the impact of greenhouse gas emissions of CH4 and CO2 in biogas on global warming, and reduce wasting energy resource. In this study, the life cycle assessment was performed to investigate the feasibility of adopting Bali sewage treatment plant, which is the largest of anaerobic sludge treatment plant in Taiwan, for the anaerobic treatment of sludge and foodwaste to produce biogas and generate the electricity. The study consists of two parts. The first part employed gas turbine and reciprocal engine to generate electricity from biogas. The composition of exhausts and performance characteristics of power generators were exmined to provide information of parameters needs for the second part. The second part conducted life cycle assessment to investigate the process of anaerobic digestion of sludge to produce biogas and generate electricity at Bali sewage treatment plant. The scenario of process of anaerobic digestion of foodwaste was also assessed. Finally, according to the emissions of exhausts of the generator, comparation of CO2 emissions of power generation from biogas with fossil fuel was made. The results from part I show, as the output power exceeds 20 kW, emission concentration of NOx using conventional reciprocal engine is about 20 times than that using gas turbine. The higher the output power, the greater the difference in NOx concentration. For 1 kWh output electricity, the emitted amount from reciprocal engine were 4.8×10-2 kg CO and 1.92 ×10-2 kg NOx with combustion efficiency (CE) of 0.97. Those from gas turbine were 4.1×10-3 kg CO and 1.63×10-3 kg NOx with CE of 0.99. The amount of exhausts of CO and NOx from gas turbine are about one-tenth of those from reciprocal engine. The results from part II indicate that the anaerobic digestion unit process exhibits the highest environmental impact in the whole processes from the input of raw matterials to the output of power generated from biogas. The impact extents of anaerobic digestion of sludge and power generation via gas turbine using biogas are 10-3 pt and 9.81×10-5 pt, respectively. The benefits of anaerobic digestion of foodwaste as a raw material are better than those of sludge. Because of the high content of organic matter of raw material of foodwaste and its large biogas output, the environmental impact using foodwaste is in half comparing with sludge. The impact extents for power generation via gas turbine using biogas with raw inputs of foodwaste and sludge are 5.6×10-4 pt and 1.11×10-3 pt, respectively. Without counting the CO2 emission from the production of biogas by anaerobic digestion, for generating 1 kWh, the gas turbine using biogas emitted CO2 of 266 g with 734 g, 203 g and 574 g less than those of power generators using coal, nature gas and oil, respectively. The use of available biogas for gas turbine in replacing the composed energy sources and sole fossil fuels for electricity generation of Taiwan can reduce at least 51.25% and 67% of CO2 emission, respectively. Therefore, the application of power generation from biogas can effectively not only solve the problem of the surplus biogas, but also offer an alternative energy to fossil fuels, effectively reducing the impact of greenhouse gas emissions.

主题分类 工學院 > 環境工程學研究所
工程學 > 土木與建築工程
参考文献
  1. Bacenetti J, Negre M, Fiala M, González-García S. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Science of the Total Environment 2013;463:541-51.
    連結:
  2. Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA. Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment 2000;5(6):319-26.
    連結:
  3. Berglund M, Börjesson P. Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy 2006;30(3): 254-66.
    連結:
  4. Bernstad A, la Cour J. A life cycle approach to the management of household food waste–a Swedish full-scale case study. Waste management 2011;31(8):1879-96.
    連結:
  5. Boulamanti AK, Maglio SD, Giuntoli J, Agostini A. Influence of different practices on biogas sustainability. Biomass and Bioenergy 2013;53:149-61.
    連結:
  6. Börjesson P, Berglund M. Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems. Biomass and Bioenergy 2007;31(5):326-44.
    連結:
  7. Gerin PA, Vliegen F, Jossart JM. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology 2008;99(7):2620-27.
    連結:
  8. Heywood JB. Internal Combustion Engine Fundamentals. New York, NY, USA McGraw-Hill; 1988.
    連結:
  9. Hospido A, Moreira T, Martín M, Rigola M, Feijoo G. Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: Anaerobic digestion versus thermal processes (10 pp). The International Journal of Life Cycle Assessment 2005;10(5):336-45.
    連結:
  10. Huang J, Crookes RJ. Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel 1998;77(15):1793-801.
    連結:
  11. Huopana T, Song H, Kolehmainen M, Niska H. A regional model for sustainable biogas electricity production: a case study from a Finnish province. Applied energy 2013;102:676-86.
    連結:
  12. Huttunen S, Manninen K, Leskinen P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. Journal of Cleaner Production 2014;80:5-16.
    連結:
  13. ISO. Environmental management: Life cycle assessment -principles and framework. ISO 14040. International Organization for Standardization; 2006a.
    連結:
  14. ISO.Environmental management: Life cycle assessment -requirements and guidelines. ISO 14044. International Organization for Standardization; 2006b.
    連結:
  15. IPCC. IPCC fourth assessment report: climate change. Intergovernmental Panel on Climate Change; 2007, p. 212.
    連結:
  16. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. The International Journal of Life Cycle Assessment 2003;8:324-30.
    連結:
  17. Kim, MH, Song HB, Song Y, Jeong IT, Kim JW. Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. International Journal of Energy and Environmental Engineering 2013;4(1):1-12.
    連結:
  18. Liebetrau J, Clemens J, Cuhls C, Hafermann C, Friehe J, Weiland P, Daniel‐Gromke, J. Methane emissions from biogas‐producing facilities Within the agricultural sector. Engineering in Life Sciences 2010;10(6):595-9.
    連結:
  19. Muench S, Guenther E. A systematic review of bioenergy life cycle assessments. Applied Energy 2013;112:257-73.
    連結:
  20. Patterson T, Esteves S, Dinsdale R, Guwy, A. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 2011;39(3):1806-16.
    連結:
  21. Pöschl M, Ward S, Owende P. Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy 2010;87(11):3305-21.
    連結:
  22. Poeschl M, Ward S, Owende P. Environmental impacts of biogas deployment–Part I: life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production 2012a;24:168-83.
    連結:
  23. Poeschl M, Ward S, Owende P. Environmental impacts of biogas deployment–Part II: life cycle assessment of multiple production and utilization pathways. Journal of Cleaner Production 2012b;24:184-201.
    連結:
  24. Porpatham, E, A. Ramesh, and B. Nagalingam. "Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine." International Journal of Hydrogen Energy 2007;32(12):2057-65.
    連結:
  25. Porpatham E, Ramesh A, Nagalingam B. Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel 2008;87(8):1651-59.
    連結:
  26. Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy 2006;31:3458-70.
    連結:
  27. Rehl T, Müller J. Life cycle assessment of biogas digestate processing technologies. Resources, Conservation and Recycling 2011;56(1):92-104.
    連結:
  28. SETAC. Guidelines for Life-Cycle Assessment: A "Code of Practice". SETAC-Brochure. Brussels: Society of Environmental Toxicology and Chemistry 1993.
    連結:
  29. Tukker A. Life cycle assessment as a tool in environmental impact assessment. Environmental Impact Assessment Review 2000;20:435-56.
    連結:
  30. Uusitalo V, Soukka R, Horttanainen M, Niskanen A, Havukainen J. Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renewable Energy 2013;51:132-40.
    連結:
  31. Verma S. Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes. Phd Dissertation. New York, NY: Columbia University; 2002
    連結:
  32. Ziemiński K, Frąc M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology 2014;11(18):4127-39.
    連結:
  33. 吳凌宇,改變點火正時探討沼氣發電機燃燒穩定性及其性能,國立交通大學機械工程學系碩士論文,2012.
    連結:
  34. 高敏恆,運用抗腐蝕材料於柴油引擎進行沼氣發電之研究,國立中興大學生物產業機電機械工程學系碩士論文,2014.
    連結:
  35. 許富翔,稻稈焙燒產製生質煤炭之生命週期評估,國立台灣大學環境工程學碩士論文,2011.
    連結:
  36. 陳文欽,廚餘與污泥共醱酵能源化操作參數之評析計畫,財團法人環境與發展基金會,2015.
    連結:
  37. 陳敬斐,綠能成金,台灣糖業股份有限公司,2015.
    連結:
  38. 環保署(環境保護署),實施碳中和參考規範PAS2060,2014.
    連結:
  39. 羅晨愷,養豬場環境溫度對30 kW沼氣渦輪發電機發電影響之實驗研究,國立交通大學機械工程學系碩士論文,2014.
    連結:
  40. Al Seadi T. Biogas handbook. Syddansk Universitet, Odense, Danmark. 2008.
  41. Capstone Turbine Co. (CTC), Capstone Moodel C30 performance, CTC, Los Angeles, CA, USA, 2006.
  42. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, von Stechow C. IPCC special report on renewable energy sources and climate change mitigation. Prepared By Working Group III of the Intergovernmental Panel on Climate Chane. Cambridge, UK: Cambridge University Press; 2011.
  43. Jiang, YH, Xiong SS, Shi W, He WH, Zhang T, Lin XK, Gu Y, Lv YD, Qian XJ, Ye ZY, Wang CM, Wang B. Research of biogas as fuel for internal combustion engine. Power and Energy Engineering Conference. Wuhan, China, 27-31 March 2009: APPEEC (Asia-Pacific Power and Energy Engineering Conference); 2009.
  44. Johansson J. A Monetary Valuation Weighing Method for Life Cycle Assessment Based on Environmental Taxes and Fees. Master Thesis. Department of Systems Ecology, Stockholm University, Stockholm, Sweden; 1999.
  45. Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D. Biomethane from dairy waste. Report. Western United Dairymen; 2005.
  46. 宇堂公司,八里污水處理廠營運報告書,宇堂工程顧問,2015.
  47. 惠民公司,八里污水處理廠年度脫硫後沼氣排放濃度,惠民實業股份有限公司,2016.
  48. 李欣哲,讓再生能源變成下一個投資潛力股,工業技術與資訊月刊188期6月號,2007.
  49. 陳航,陳郁文. 二氧化碳之捕集及再利用技術之應用介紹,工業污染防治第94 期Apr. 2005;117.
  50. 惠民公司. 沼氣採樣年度報告表,惠民工程顧問,2015.
  51. 曾偉倫,台北市都市生質廢棄物之都市代謝研究,國立台灣大學環境工程學碩士論文,2015.
  52. 經濟部工業局,廢水污泥之厭氧消化PPT,2005.
  53. 經濟部能源局,沼氣發電再造綠色能源專刊, 2013.
  54. 經濟部能源局,中華民國103年能源統計手冊, 2015.
  55. 臺北市環保局,臺北市廚餘生質能源化發展規劃PPT,2015.
  56. 鄭幸雄,兩段式高溫厭氧生物共消化程序開發應用,中工高雄會刊22卷2期,2015.
  57. 鄭清山,烷化生質柴油對柴油引擎影響之研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文,2003.
  58. 環檢所(環境檢驗所),「生質燃料應評估與示範」,台灣桃園, 2013.