题名

核殼蛋白質在中東呼吸症候群冠狀病毒RNA包裹訊號辨識及病毒組裝中扮演的角色

并列篇名

Involvement of MERS-CoV nucleocapsid protein in RNA package signal recognition and virion assembly

DOI

10.6342/NTU201802934

作者

張展華

关键词

中東呼吸症候群冠狀病毒 ; 包裹訊號 ; 核殼蛋白質 ; 類病毒顆粒 ; Middle East respiratory syndrome coronavirus (MERS-CoV) ; RNA package signal ; nucleocapsid (N) protein ; virus-like particle (VLP)

期刊名称

臺灣大學微生物學研究所學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

張鑫

内容语文

英文

中文摘要

中東呼吸症候群冠狀病毒(MERS-CoV)是新型感染人類的冠狀病毒,患者感染後會引起類似感冒症狀外加嘔吐、腹瀉等腸胃道症狀,重症則出現急性腎衰竭、血管內瀰漫性凝血等併發症,致死率高達35%。過去研究已知包裹訊號 (package signal)對於冠狀病毒包裹其RNA基因體是非常重要的。先前我們實驗室利用基因體序列分析比對與RNA二級結構預測之方式預測了MERS-CoV的包裹訊號可能出現在核酸序列19,712-19,969範圍之中。利用類病毒顆粒(virus-like particle)的系統觀察,發現包裹訊號確實在這段258個核酸的序列之中,因此將此段RNA命名為PS258(19712-19969)ME,研究也發現包裹RNA需藉由核殼蛋白質(nucleocapsid protein; N protein)達成。本研究接續先前的研究,尋找PS258(19712-19969)ME中更精確的包裹訊號所在,探討核殼蛋白質與其結合的RNA-binding domain,也同時探討另一預測含有穩定二級結構,由核酸序列20,022-20,173長152個核酸組成的 RNA152(20022-20173)ME片段是否也可作為包裹訊號。同樣使用類病毒顆粒系統觀察,結果發現包含於PS258(19712-19969)ME中由核酸序列19,801-19,864組成的二級結構PS258ME-SLII與RNA152(20022-20173)ME這兩段序列皆有單獨作為包裹訊號並將RNA包裹到類病毒顆粒的能力。另一方面將帶有PS258ME-SLII頂端二級結構的SL19805ME片段與純化的MERS-CoV核殼蛋白質全長及其他sub-domains,利用filter-binding assay與electrophoretic mobility shift assay方式皆可以觀察到核殼蛋白質的N端和C端與SL19805ME RNA的結合。而利用IP的方式,初步看到核殼蛋白質與膜蛋白質(membrane protein; M protein)有交互作用,但是否藉此交互作用將帶有RNA基因體的核殼蛋白質包裹至病毒顆粒內則需進一步證實。關於MERS-CoV如何將帶有包裹訊號的RNA片段包裹至病毒顆粒內,以及結構蛋白質彼此之間參與在病毒組裝上的詳細機制則需要更多的實驗來進行探討。

英文摘要

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus. The symptoms of the infected patients include cold symptoms, vomiting, diarrhea and gastrointestinal symptoms. Severe cases may suffer from acute kidney failure and disseminated intravascular coagulation (DIC). The mortality rate is up to 35%. In previous studies, the importance of RNA package signal in coronavirus RNA genome packaging has been well-established. Based on genome sequence alignment and RNA secondary structure prediction, our laboratory has previously predicted a potential package signal of MERS-CoV located at nt 19,712 to 19,969. By using a MERS-CoV virus-like particle (VLP) system, the result showed that the 258-nt fragment, named PS258(19712-19969)ME, is sufficient to function as a package signal. In addition, the package is nucleocapsid (N) protein-dependent. In the present study, the minimum sequence and structure within the PS258(19712-19969)ME to function as a package signal was analyzed and the RNA-binding domain of N protein was determined. Meanwhile, another potential fragment, RNA152(20022-20173)ME, spanning nt 20,022-20,173 with stable secondary structure was examined for its function to act as a package signal. Results demonstrated that both PS258ME-SLII, a 64-nt substructure of PS258(19712-19969)ME, and RNA152(20022-20173)ME can independently act as a package signal and be packaged into VLPs. In addition, a RNA probe SL19805ME representing the top part of PS258ME-SLII was synthesized and its interactions with N-terminus and C-terminus of the N protein were demonstrated by filter-binding assay and electrophoretic mobility shift assay. Preliminary data from co-immunoprecipitation indicated a potential interaction between the viral N protein and M protein. Whether this interaction mediates assembly of the N protein-RNA genome complex into the virus particles needs to be verified. The mechanism of how viral RNA with package signal is packaged into the viral particle and the roles of structural proteins within the viral assembly needed to be further determined.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 微生物學研究所
参考文献
  1. 1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, et al. Isolation of novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367: 1814–1820.
  2. 2. de Groot RJ, Baker SC, Baric RS, Brown CS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013; 87: 7790-7792.
  3. 3. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3: e00473-12.
  4. 4. Raj VS, Osterhaus AD, Fouchier RA, and Haagmans BL. MERS: emergence of a novel human coronavirus. Curr Opin Virol. 2014; 5: 58-62.
  5. 5. WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (http://www.who.int/emergencies/mers-cov/en/)
  6. 6. Nishiura H, Endo A, Saitoh M, Kinoshita R, et al. Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis. BMJ Open. 2016; 6: e009936.
  7. 7. Memish ZA, Mishra N, Olival KJ, Fagbo SF, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013; 19: 1819–1823.
  8. 8. Reusken CB, Haagmans BL, Müller MA, Gutierrez C, et al. Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013; 13: 859–866.
  9. 9. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014; 370: 2499–2505.
  10. 10. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013; 13: 752–761.
  11. 11. Al-Tawfiq JA, Kattan RF, and Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia. World J Clin Pediatr. 2016; 5: 391–396.
  12. 12. Memish ZA, Al-Tawfiq JA, Assiri A, AlRabiah FA, et al. Middle East respiratory syndrome coronavirus disease in children. Pediatr Infect Dis J. 2014; 33: 904–906.
  13. 13. Kim KH, Tandi TE, Choi JW, Moon JM, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications. J Hosp Infect. 2017; 95: 207–213.
  14. 14. Corman VM, Müller MA, Costabel U, Timm J, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012; 17: 20334.
  15. 15. Ujike M and Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses. 2015; 7: 1700–1725.
  16. 16. Huang Y, Yang ZY, Kong WP, and Nabel GJ. Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production. J Virol. 2004; 78: 12557–12565.
  17. 17. Tseng YT, Chang CH, Wang SM, Huang KJ, et al. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly. PLoS One. 2013; 8: e64013.
  18. 18. Raj VS, Mou H, Smits SL, Dekkers DHW, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495: 251-254.
  19. 19. Chan CM, Chu H, Wang Y, Wong BH, et al. Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome coronavirus. J Virol. 2016; 90: 9114–9127.
  20. 20. Li W, Hulswit RJG, Widjaja I, Raj VS, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci USA. 2017; 114: E8508-E8517.
  21. 21. Lu G, Wang Q, and Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015; 23: 468-478.
  22. 22. Wang N, Shi X, Jiang L, Zhang S, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013; 23: 986–993.
  23. 23. Lu L, Liu Q, Zhu Y, Chan KH, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 2014; 5: 3067.
  24. 24. Dua L, Yangb Y, Zhouc Y, Lud L, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017; 21: 131-143.
  25. 25. Boscarino JA, Logan HL, Lacny JJ, and Gallagher TM. Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol. 2008; 82: 2989–2999.
  26. 26. Madan V, Garcia JM, Sanz MA, and Carrasco L. Viroporin activity of murine hepatitis virus E protein. FEBS Lett. 2005; 579: 3607–3612.
  27. 27. Wilson L, McKinlay C, Gage P, and Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology. 2004; 330: 322–331.
  28. 28. Wilson L, Gage P, and Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006; 353: 294–306.
  29. 29. Papageorgiou N, Lichière J, Baklouti A, Ferron F, et al. Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering. Acta Crystallogr D Struct Biol. 2016; 72: 192–202.
  30. 30. Jayaram H, Fan H, Bowman BR, Ooi A, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid formation. J Virol. 2006; 80: 6612–6620.
  31. 31. Luo H, Chen Q, Chen J, Chen K, et al. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005; 579: 2623–2628.
  32. 32. Lo YS, Lin SY, Wang SM, Wang CT, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett. 2013; 587: 120-127.
  33. 33. Chen CY, Chang CK, Chang YW, Sue SC, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol. 2007; 368: 1075-1086.
  34. 34. Kuo L, Koetzner C, and Masters PS. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging. Virology. 2016; 494: 100–107.
  35. 35. Zhai Y, Sun F, Li X, Pang H, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol. 2005; 12: 980–986.
  36. 36. Eckerle LD, Lu X, Sperry SM, Choi L, et al. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol. 2007; 81: 12135–12144.
  37. 37. Ivanov KA, Hertzig T, Rozanov M, Bayer S, et al. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci USA. 2004; 101: 12694–12699.
  38. 38. Decroly E, Imbert I, Coutard B, Bouvet M, et al. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol. 2008; 82: 8071–8084.
  39. 39. Perlman S and Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7: 439-450.
  40. 40. Narayanan K, Huang C, Lokugamage K, Kamitan W, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008; 82: 4471-4479.
  41. 41. Zust R, Cervantes-Barraga L, Kuri T, Blakqori G, et al. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog. 2007; 3: e109.
  42. 42. Terada Y, Kawachi K, Matsuura Y, and Kamitani W. MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA. Virology. 2017; 511: 95–105.
  43. 43. Wathelet MG, Orr M, Frieman MB, and Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol. 2007; 81: 11620–11633.
  44. 44. Devaraj SG, Wang N, Chen Z, Chen Z, et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem. 2007; 282: 32208–32221.
  45. 45. Yang Y, Zhang L, Geng H, Deng Y, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013; 4: 951–961.
  46. 46. Siu KL, Yeung ML, Kok KH, Yuen KS, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol. 2014; 88: 4866-4876.
  47. 47. Thornbrough JM, Jha BK, Yount B, Goldstein SA, et al. Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation. MBio. 2016; 7: e00258.
  48. 48. Park JE, Li K, Barlan A, Fehr AR, et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci USA. 2016; 113: 12262–12267.
  49. 49. Durai P, Batool M, Shah M, and Choi S. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med. 2015; 47: e2015049.
  50. 50. Makino S, Yokomori K, and Lai MM. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. J Virol. 1990; 64: 6045-6053.
  51. 51. Fosmire JA, Hwang K, and Makino S. Identification and characterization of a coronavirus packaging signal. J Virol. 1992; 66: 3522–3530.
  52. 52. Narayanan K and Makino S. Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol. 2001; 75: 9059-9067.
  53. 53. Hsieh PK, Chang SC, Huang CC, Lee TT, et al. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol. 2005; 79: 13848–13855.
  54. 54. Narayanan K, Maeda A, Maeda J, and Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol. 2000; 74: 8127–8134.
  55. 55. Narayanan K, Chen CJ, Maeda J, and Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol. 2003; 77: 2922-2927.
  56. 56. Kuo L, Koetzner CA, Hurst KR, and Masters PS. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA binding domain of the nucleocapsid protein. J Virol. 2014; 88: 4451–4465.
  57. 57. Cologna R and Hogue BG. Identification of a bovine coronavirus packaging signal. J Virol. 2000; 74: 580–583.
  58. 58. Chen SC, van den Born E, van den Worm SH, Pleij CW, et al. New structure model for the packaging signal in the genome of group IIa coronaviruses. J Virol. 2007; 81: 6771–6774.
  59. 59. Qin L, Xiong B, Luo C, Guo ZM, et al. Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta Pharmacol Sin. 2003; 24: 489-496.
  60. 60. Hsin WC. RNA packaging signal of Middle East respiratory syndrome coronavirus. Master thesis. Graduate Institute of Microbiology, College of Medicine, National Taiwan University. 2016.
  61. 61. Kou YH, Chou SM, Wang YM, Chang YT, et al. Hepatitis C virus NS4A inhibits cap-dependent and the viral IRES-mediated translation through interacting with eukaryotic elongation factor 1A. J Biomed Sci. 2006; 13: 861–874.
  62. 62. Chang CK, Hsu YL, Chang YH, Chao FA, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol. 2009; 83: 2255–2264.
  63. 63. Takeda M, Chang CK, Ikeya T, Güntert P, et al. Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol. 2008; 380: 608-622.
  64. 64. Dalton K, Casais R, Shaw K, Stirrups K, et al. Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol. 2001; 75: 125–133.
  65. 65. Escors D, Izeta A, Capiscol C, and Enjuanes L. Transmissible gastroenteritis coronavirus packaging signal is located at the 5’ end of the virus genome. J Virol. 2003; 77: 7890–7902.
  66. 66. Bertram S, Dijkman R, Habjan M, Heurich A, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013; 87: 6150-6160.
  67. 67. Glowacka I, Bertram S, Mu¨ller MA, Allen P, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85: 4122-4134.
  68. 68. Bertram S, Glowacka I, Mu¨ller MA, Lavender H, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011; 85: 13362-13372.
  69. 69. Gierer S, Bertram S, Kaup F, Wrensch F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013; 87: 5503-5511.
  70. 70. Millet JK and Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. 2014; 111: 15214-15219.
  71. 71. Escors D, Ortego J, Laude H, and Enjuanes L. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol. 2001; 75: 1312–1324.
  72. 72. Masters P and Perlman S. Chapter 28 Coronaviridae. Fields virology, 6th Edition. Philadelphia, PA, USA. Lippincott Williams & Wilkins. 2013.