参考文献
|
-
1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, et al. Isolation of novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367: 1814–1820.
-
2. de Groot RJ, Baker SC, Baric RS, Brown CS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013; 87: 7790-7792.
-
3. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3: e00473-12.
-
4. Raj VS, Osterhaus AD, Fouchier RA, and Haagmans BL. MERS: emergence of a novel human coronavirus. Curr Opin Virol. 2014; 5: 58-62.
-
5. WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (http://www.who.int/emergencies/mers-cov/en/)
-
6. Nishiura H, Endo A, Saitoh M, Kinoshita R, et al. Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis. BMJ Open. 2016; 6: e009936.
-
7. Memish ZA, Mishra N, Olival KJ, Fagbo SF, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013; 19: 1819–1823.
-
8. Reusken CB, Haagmans BL, Müller MA, Gutierrez C, et al. Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013; 13: 859–866.
-
9. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014; 370: 2499–2505.
-
10. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013; 13: 752–761.
-
11. Al-Tawfiq JA, Kattan RF, and Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia. World J Clin Pediatr. 2016; 5: 391–396.
-
12. Memish ZA, Al-Tawfiq JA, Assiri A, AlRabiah FA, et al. Middle East respiratory syndrome coronavirus disease in children. Pediatr Infect Dis J. 2014; 33: 904–906.
-
13. Kim KH, Tandi TE, Choi JW, Moon JM, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications. J Hosp Infect. 2017; 95: 207–213.
-
14. Corman VM, Müller MA, Costabel U, Timm J, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012; 17: 20334.
-
15. Ujike M and Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses. 2015; 7: 1700–1725.
-
16. Huang Y, Yang ZY, Kong WP, and Nabel GJ. Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production. J Virol. 2004; 78: 12557–12565.
-
17. Tseng YT, Chang CH, Wang SM, Huang KJ, et al. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly. PLoS One. 2013; 8: e64013.
-
18. Raj VS, Mou H, Smits SL, Dekkers DHW, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495: 251-254.
-
19. Chan CM, Chu H, Wang Y, Wong BH, et al. Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome coronavirus. J Virol. 2016; 90: 9114–9127.
-
20. Li W, Hulswit RJG, Widjaja I, Raj VS, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci USA. 2017; 114: E8508-E8517.
-
21. Lu G, Wang Q, and Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015; 23: 468-478.
-
22. Wang N, Shi X, Jiang L, Zhang S, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013; 23: 986–993.
-
23. Lu L, Liu Q, Zhu Y, Chan KH, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 2014; 5: 3067.
-
24. Dua L, Yangb Y, Zhouc Y, Lud L, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017; 21: 131-143.
-
25. Boscarino JA, Logan HL, Lacny JJ, and Gallagher TM. Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol. 2008; 82: 2989–2999.
-
26. Madan V, Garcia JM, Sanz MA, and Carrasco L. Viroporin activity of murine hepatitis virus E protein. FEBS Lett. 2005; 579: 3607–3612.
-
27. Wilson L, McKinlay C, Gage P, and Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology. 2004; 330: 322–331.
-
28. Wilson L, Gage P, and Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006; 353: 294–306.
-
29. Papageorgiou N, Lichière J, Baklouti A, Ferron F, et al. Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering. Acta Crystallogr D Struct Biol. 2016; 72: 192–202.
-
30. Jayaram H, Fan H, Bowman BR, Ooi A, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid formation. J Virol. 2006; 80: 6612–6620.
-
31. Luo H, Chen Q, Chen J, Chen K, et al. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005; 579: 2623–2628.
-
32. Lo YS, Lin SY, Wang SM, Wang CT, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett. 2013; 587: 120-127.
-
33. Chen CY, Chang CK, Chang YW, Sue SC, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol. 2007; 368: 1075-1086.
-
34. Kuo L, Koetzner C, and Masters PS. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging. Virology. 2016; 494: 100–107.
-
35. Zhai Y, Sun F, Li X, Pang H, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol. 2005; 12: 980–986.
-
36. Eckerle LD, Lu X, Sperry SM, Choi L, et al. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol. 2007; 81: 12135–12144.
-
37. Ivanov KA, Hertzig T, Rozanov M, Bayer S, et al. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci USA. 2004; 101: 12694–12699.
-
38. Decroly E, Imbert I, Coutard B, Bouvet M, et al. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol. 2008; 82: 8071–8084.
-
39. Perlman S and Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7: 439-450.
-
40. Narayanan K, Huang C, Lokugamage K, Kamitan W, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008; 82: 4471-4479.
-
41. Zust R, Cervantes-Barraga L, Kuri T, Blakqori G, et al. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog. 2007; 3: e109.
-
42. Terada Y, Kawachi K, Matsuura Y, and Kamitani W. MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA. Virology. 2017; 511: 95–105.
-
43. Wathelet MG, Orr M, Frieman MB, and Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol. 2007; 81: 11620–11633.
-
44. Devaraj SG, Wang N, Chen Z, Chen Z, et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem. 2007; 282: 32208–32221.
-
45. Yang Y, Zhang L, Geng H, Deng Y, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013; 4: 951–961.
-
46. Siu KL, Yeung ML, Kok KH, Yuen KS, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol. 2014; 88: 4866-4876.
-
47. Thornbrough JM, Jha BK, Yount B, Goldstein SA, et al. Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation. MBio. 2016; 7: e00258.
-
48. Park JE, Li K, Barlan A, Fehr AR, et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci USA. 2016; 113: 12262–12267.
-
49. Durai P, Batool M, Shah M, and Choi S. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med. 2015; 47: e2015049.
-
50. Makino S, Yokomori K, and Lai MM. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. J Virol. 1990; 64: 6045-6053.
-
51. Fosmire JA, Hwang K, and Makino S. Identification and characterization of a coronavirus packaging signal. J Virol. 1992; 66: 3522–3530.
-
52. Narayanan K and Makino S. Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol. 2001; 75: 9059-9067.
-
53. Hsieh PK, Chang SC, Huang CC, Lee TT, et al. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol. 2005; 79: 13848–13855.
-
54. Narayanan K, Maeda A, Maeda J, and Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol. 2000; 74: 8127–8134.
-
55. Narayanan K, Chen CJ, Maeda J, and Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol. 2003; 77: 2922-2927.
-
56. Kuo L, Koetzner CA, Hurst KR, and Masters PS. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA binding domain of the nucleocapsid protein. J Virol. 2014; 88: 4451–4465.
-
57. Cologna R and Hogue BG. Identification of a bovine coronavirus packaging signal. J Virol. 2000; 74: 580–583.
-
58. Chen SC, van den Born E, van den Worm SH, Pleij CW, et al. New structure model for the packaging signal in the genome of group IIa coronaviruses. J Virol. 2007; 81: 6771–6774.
-
59. Qin L, Xiong B, Luo C, Guo ZM, et al. Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta Pharmacol Sin. 2003; 24: 489-496.
-
60. Hsin WC. RNA packaging signal of Middle East respiratory syndrome coronavirus. Master thesis. Graduate Institute of Microbiology, College of Medicine, National Taiwan University. 2016.
-
61. Kou YH, Chou SM, Wang YM, Chang YT, et al. Hepatitis C virus NS4A inhibits cap-dependent and the viral IRES-mediated translation through interacting with eukaryotic elongation factor 1A. J Biomed Sci. 2006; 13: 861–874.
-
62. Chang CK, Hsu YL, Chang YH, Chao FA, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol. 2009; 83: 2255–2264.
-
63. Takeda M, Chang CK, Ikeya T, Güntert P, et al. Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol. 2008; 380: 608-622.
-
64. Dalton K, Casais R, Shaw K, Stirrups K, et al. Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol. 2001; 75: 125–133.
-
65. Escors D, Izeta A, Capiscol C, and Enjuanes L. Transmissible gastroenteritis coronavirus packaging signal is located at the 5’ end of the virus genome. J Virol. 2003; 77: 7890–7902.
-
66. Bertram S, Dijkman R, Habjan M, Heurich A, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013; 87: 6150-6160.
-
67. Glowacka I, Bertram S, Mu¨ller MA, Allen P, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85: 4122-4134.
-
68. Bertram S, Glowacka I, Mu¨ller MA, Lavender H, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011; 85: 13362-13372.
-
69. Gierer S, Bertram S, Kaup F, Wrensch F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013; 87: 5503-5511.
-
70. Millet JK and Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. 2014; 111: 15214-15219.
-
71. Escors D, Ortego J, Laude H, and Enjuanes L. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol. 2001; 75: 1312–1324.
-
72. Masters P and Perlman S. Chapter 28 Coronaviridae. Fields virology, 6th Edition. Philadelphia, PA, USA. Lippincott Williams & Wilkins. 2013.
|