题名

一維奈米半導體/壓電材料在非量子局限尺寸下之光電性質與電子結構研究

并列篇名

Optoelectronic Properties and Electronic Structures of One-dimensional Semiconducting/Piezoelectric Nanostructures with Sizes beyond the Quantum Confinement Regime

DOI

10.6342/NTU.2012.00993

作者

陳政營

关键词

氧化鋅 ; 鋯鈦酸鉛 ; 奈米線 ; 光偵測器 ; 光電性質 ; 奈米發電機 ; 表面效應 ; ZnO ; PZT ; nanowire ; photodetector ; optoelectric properties ; nanogenerator ; surface effects

期刊名称

臺灣大學光電工程學研究所學位論文

卷期/出版年月

2012年

学位类别

博士

导师

何志浩

内容语文

英文

中文摘要

本論文在非量子局限尺寸下研究一維奈米半導體/壓電材料之光電性質及電子結構與討論其超越其本質材料的優異光電特性。 首先,由於一維奈米材料具有次波長的直徑、高的長寬比及大的介電常數,所以具有顯著的光學異向性。在此我們發現75o–85o斜向氧化鋅單晶奈米線陣列之新穎材料具有顯著的水平雙折射及優異的偏極化放光特性。其中,此水平雙折射的大小( 0.11)比起塊材氧化鋅大一個量級。這研究結果說明此新穎材料不只可以應用於被動光學元件且可以用於具有偏極化光學偵測與發光元件。 第二,由於一維奈米材料具極大的表面積與體積比且半徑接近於德拜長度,所以光電性質強烈地被表面電子結構所影響。這裡我們透過四個主題研究一維奈米材料的電子結構(尤其是表面電子結構)與其光電性質的關係:(1)利用光電子能譜配合場效電晶體量測觀測氧化鋅奈米線的表面能帶彎曲之關係; (2)利用x光吸收光譜研究摻鉺氧化鋅奈米柱陣列的電子結構與1.54 μm放光效率; (3) 透過表面鈍化加強近帶隙發光; (4) 氧化鋅奈米帶的光響應與表面及介面效應的關係。這些研究結果非常有助於一維奈米材料製作感測器與光電元件。 最後,因為氧化鋅是纖鋅礦極性半導體具有機電耦合效應,所以利用氧化鋅奈米線陣列的壓電特性來作為能量收集的研究也在論文中被討論。而鋯鈦酸鉛是傳統認知的壓電材料,故我們也研究鋯鈦酸鉛奈米線陣列的壓電特性來與氧化鋅的結果做比較。這研究有助於深入瞭解與設計奈米發電機。

英文摘要

In this thesis, we studied optoelectronic properties and electronic structures of one-dimensional (1-D) semiconducting/piezoelectric nanostructures with sizes beyond the quantum confinement regime and discussed their superior optoelectronic/photonic features as compared to their thin film of bulk counterpart. First of all, since 1-D nanostructures have subwavelength diameters and large aspect ratios, which combined with the high permittivity of semiconductors lead to a strong optical anisotropy, we report a novel optically anisotropic metamaterial based on single crystalline ZnO nanowire arrays (NWAs) with highly oblique angles (75o–85o), exhibiting giant in-plane birefringence and optical polarization degree in photoluminescence emission. The in-plane birefringence ( 0.11) of oblique-aligned ZnO NWAs is almost one order of magnitude higher than that of ZnO bulk. The oblique-aligned NWAs not only allow important technological applications in passive photonic components but also benefit the development of the optoelectronic devices in polarized light sensing and emission. Second, in 1-D nanostructures, with large surface-to-volume ratios and Debye lengths comparable to their diameters, their electronic and optoelectronic properties are strongly affected by the electronic structures at their surfaces. Here we systematically and in-depth investigated the correlation between electronic structures (especially at the surface) of 1-D (Er-doped) ZnO nanostrucrures and their optoelectronic properties through the following four subjects: (1) in situ probing the surface band bending (SBB) of the ZnO NWs using photoelectron spectroscopy in conjunction with the field-effect transistor measurements; (2) correlation between electronic structures of Er-Doped ZnO nanorod arrays and efficiency of 1.54 μm emission by studied by X-ray absorption spectroscopy; (3) enhanced near-band-edge emission of ZnO nanorods via the surface passivation; (4) correlation between photoresponse of ZnO nanobelts and the surface/interface effects. These studies are greatly beneficial for the 1-D nanostructure based device design of sensor and optoelectronic applications. Finally, since ZnO is the wurtzite polar semiconductor and has the electromechanical coupling effect, piezoelectric characteristics of well-aligned ZnO NWAs were investigated for energy-harvesting nanodevices via its piezoelectricity. Besides, lead zirconate titanate [PbZr1−xTixO3 (PZT)] is a typical piezoelectric material, so the PbZr02Ti0.8O3 NWAs were also studied. This study is useful for optimizing the performance for nanogenerator applications.

主题分类 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. Chapter 1
    連結:
  2. [5] R. Yan, D. Gargas, and P. D. Yang, Nature Photonics 3, 569 (2009).
    連結:
  3. [8] Z. L. Wang, Adv. Funct. Mater. 18, 3553 (2008).
    連結:
  4. [9] M. W. Allen and S. M. Durbin, Appl. Phys. Lett. 92, 122110 (2008).
    連結:
  5. [10] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
    連結:
  6. [1] P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. Wang, N. Leprince-Wang, and D. P. Yu, Nano Lett. 9, 2513 (2009).
    連結:
  7. [5] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
    連結:
  8. [6] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, Nanotechnology 20, 135701 (2009).
    連結:
  9. [10] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
    連結:
  10. [11] Y. Q. Bie, Z. M. Liao, P. W. Wang, Y. B. Zhou, X. B. Han, Y. Ye, Q. Zhao, X. S. Wu, L. Dai, J. Xu, L. W. Sang, J. J. Deng, K. Laurent, Y. Leprince-Wang, and D. P. Yu, Adv. Mater. 22, 4284 (2010).
    連結:
  11. [24] D. Artigas and L. Torner, Phys. Rev. Lett. 94, 013901 (2005).
    連結:
  12. [26] O. L. Muskens, S. L. Diedenhofen, M. H. M. van Weert, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, Adv. Funct. Mater. 18, 1039 (2008).
    連結:
  13. [34] I. Hodgkinson and Q. H. Wu, Appl. Opt. 38, 3621 (1999).
    連結:
  14. [35] T. Motohiro and Y. Taga, Appl. Opt. 28, 2466 (1989).
    連結:
  15. [38] G. E. Jellison, Jr. and C. M. Rouleau, Appl. Opt. 44, 3153 (2005).
    連結:
  16. [39] G. E. Jellison, Jr. and L. A. Boatner, Phys. Rev. B 58, 3586 (1998).
    連結:
  17. [40] H. Huang, C. Y. Chen, Y. F. Lai, Y. I Shih, Y. C. Lin, J. H. He, and C. P. Liu, Cryst. Growth Des. 10, 3297 (2010).
    連結:
  18. [43] C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007).
    連結:
  19. [47] H. Wang, J. Mod. Opt. 42, 497 (1995).
    連結:
  20. [48] S. Heavens, Rep. Prog. Phys. 23, 1 (1960).
    連結:
  21. [52] Y. J. Jen, C. C. Lee, and Y. M. Chang, J. Opt. A: Pure Appl. Opt. 4, 481 (2002).
    連結:
  22. [53] H. Yoshikawa, and S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997).
    連結:
  23. [55] A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006).
    連結:
  24. [56] H. E. Ruda and A. Shik, Phys. Rev. B 72, 115308 (2005).
    連結:
  25. [60] P. C. Sercel and K. J. Vahala, Appl. Phys. Lett. 57, 545 (1990).
    連結:
  26. [61] P. C. Sercel and K. J. Vahala, Phys. Rev. B 44, 5681 (1991).
    連結:
  27. [3] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
    連結:
  28. [10] J. H. He, P. H. Chang, and C. Y. Chen, and K. D. Tsai, Nanotechnology 20, 135701 (2009).
    連結:
  29. [12] M. W. Allen and S. M. Durbin, Appl. Phys. Lett. 92, 122110 (2008).
    連結:
  30. [15] G. Shen, Recent Pat Nanotechnol. 2, 160 (2008).
    連結:
  31. [16] J. Huang and Q. Wan, Sensors 9, 9903 (2009).
    連結:
  32. [17] P. C. Chen, G. Shen, and C. Zhou, IEEE Trans. Nanotechnol. 7, 668 (2008).
    連結:
  33. [22] R. T. Tung, Mater. Sci. Eng., R. 35, 1 (2001).
    連結:
  34. [23] D. Briggs and M. P. Seah, Practical surface analysis by Auger and X-Ray photoelectron spectroscopy, (John Wiley & Sons, New York, 1983).
    連結:
  35. [26] Z. L. Wang, Mater. Sci. Eng. R. 64, 33 (2009).
    連結:
  36. [28] W. K. Hong, G. Jo, S. S. Kwon, S. Song, and T. Lee, IEEE Trans. Electron Devices 55, 3020 (2008).
    連結:
  37. [41] V. P. Zhdanov, Surf. Sci. 512, L331 (2002).
    連結:
  38. [42] S. Khoobiar, J. Phys. Chem. 68, 411 (1964).
    連結:
  39. [43] D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    連結:
  40. [4] K. Takahei and A. Taguchi, Jpn. J. Appl. Phys. 33, 709 (1994).
    連結:
  41. [10] S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, Appl. Phys. Lett. 76, 3935 (2002).
    連結:
  42. [20] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
    連結:
  43. [26] J. W. Chiou, K. P. K. Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004).
    連結:
  44. [28] D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, Appl. Phys. Lett. 61, 2181 (1992).
    連結:
  45. [31] T. Fujikawa, J. Phys. Soc. Jpn. 55, 3244 (1986).
    連結:
  46. [32] F. W. Lytle and R. B. Greegor, Appl. Phys. Lett. 56, 192 (1990).
    連結:
  47. [33] P. M. Peters and S. N. Houde-Walter, Appl. Phys. Lett. 70, 541 (1997).
    連結:
  48. Chapter 5
    連結:
  49. [2] D. Appell, Nature (London) 419, 553 (2002).
    連結:
  50. [4] J. H. He and C. H. Ho, Appl. Phys. Lett. 91, 233105 (2007).
    連結:
  51. [5] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, Adv. Mater. 19, 781 (2007).
    連結:
  52. [7] G. Yi, C. Wang, and W. I. Park, Semicond. Sci. Technol. 20, S22 (2005).
    連結:
  53. [9] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, Science 316, 102 (2007).
    連結:
  54. [11] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang Science 292, 1897 (2001).
    連結:
  55. [13] C. Hsu, Y. Lin, S. Chang, T. Lin, S. Tsai, and I. Chen, Chem. Phys. Lett. 411, 221 (2005).
    連結:
  56. [22] A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006).
    連結:
  57. [28] J. I. Pankove, Optical processes in semiconductors, (Prentice-Hall, 1971, p.166).
    連結:
  58. [29] J. E. Fouquet and A. E. Siegman, Appl. Phys. Lett. 46, 280 (1985).
    連結:
  59. [31] C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. Shen J. Appl. Phys. 90, 4489 (2001).
    連結:
  60. Chapter 6
    連結:
  61. [2] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
    連結:
  62. [3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
    連結:
  63. [5] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, Nanotechnology 20, 135701 (2009).
    連結:
  64. [11] X. Fang, Y. Bando, M. Liao, T. Zhai, U. K. Gautam, L. Li, Y. Koide, D. Golberg, Adv. Funct. Mater. 20, 500 (2010).
    連結:
  65. [12] V. Pachauri, A. Vlandas, K. Kern, and K. Balasubramanian, Small 6, 589 (2010).
    連結:
  66. [13] C. Yan, N. Singh, and P. S. Lee, Appl. Phys. Lett., 96, 053108 (2010).
    連結:
  67. [16] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
    連結:
  68. [25] D. H. Zhang and D. E. Brodie, Thin Solid Films 238, 95 (1994).
    連結:
  69. Chapter 7
    連結:
  70. [1] Special Issue on Sustainability and Energy, Science 315, 721-896 (2007).
    連結:
  71. [2] Special Issue on Harnessing Materials for Energy, MRS Bull. 33, No. 4 (2008).
    連結:
  72. [3] Z. L. Wang, Adv. Funct. Mater. 18, 3553 (2008).
    連結:
  73. [4] Z. L. Wang, Mater. Sci. Eng. R 64, 33 (2009).
    連結:
  74. [14] K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang, and K. J. Lee, Nano Lett. 10, 4939 (2010).
    連結:
  75. [15] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, Nano Lett. 10, 726 (2010).
    連結:
  76. [16] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, Adv. Mater. 22, 4008 (2010).
    連結:
  77. [18] W. S. Su, Y. F. Chen, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 90, 063110 (2007).
    連結:
  78. [19] C. T. Huang, J. Song, W. F. Lee, Y. Ding, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, J. Am. Chem. Soc. 132, 4766 (2010).
    連結:
  79. [21] M. T. Chen, M. P. Lu, Y. J. Wu, J. Song, C. Y. Lee, M. Y. Lu, Y. C. Chang, L. J. Chou, Z. L. Wang, and L. J. Chen, Nano Lett. 10, 4387 (2010).
    連結:
  80. [23] J. H. He, P. H. Chang, C. Y. Chen, and K. D. Tsai, Nanotechnology 20, 135701 (2009).
    連結:
  81. [28] P. C. Chen, G. Shen, and C. Zhou, IEEE Trans. Nanotechnol. 7, 668 (2008).
    連結:
  82. [29] J. H. Huang, C. Y. Chen, Y. F. Lai, Y. I. Shih, Y. C. Lin, J. H. He, and C. P. Liu, Cryst. Growth Des. 10, 3297 (2010).
    連結:
  83. [30] Z. L. Wang, Adv. Mater. 21, 1311 (2009).
    連結:
  84. [32] M. Riaz, J. Song, O. Nur, Z. L. Wang, and M.Willander, Adv. Funct. Mater. 21, 628 (2011).
    連結:
  85. [33] G. Mantini, Y. Gao, A.D'Amico, C. Falconi, and Z. L. Wang, Nano Res. 2, 624 (2009).
    連結:
  86. Chapter 8
    連結:
  87. [1] Z. L. Wang, Adv. Funct. Mater. 18, 3553 (2008).
    連結:
  88. [2] Z. L. Wang and J. Song, Science 312, 242 (2006) .
    連結:
  89. [4] C. Pan, Z. Li, W. Guo, J. Zhu, and Z. L. Wang, Angew. Chem. Int. Ed, 50, 11192 (2011).
    連結:
  90. [5] M. Riaz, J. Song, O. Nur, Z. L. Wang, and M. Willander, Adv. Funct. Mater. 21, 628 (2011).
    連結:
  91. [6] C. Y. Chen, J. H. Huang, J. Song, Y. Zhou, L. Lin, P. C. Huang, C. P. Liu, Y. Zhang, J. H. He, and Z. L. Wang, ACS Nano 5, 6707 (2011).
    連結:
  92. [10] X. Wang, J. Song, F. Zhang, C. He, Z. Hu, and Z. L. Wang, Adv. Mater. 22, 2155 (2010).
    連結:
  93. [11] L. Shaoping, W. Cao, and L. E. Cross, Mater. Lett. 10, 219 (1990).
    連結:
  94. [14] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, Nano Lett. 8, 4027 (2008).
    連結:
  95. [16] Y.Z. Chen, T.H. Liu, C.Y. Chen, C.H. Liu, S.Y. Chen, W.W. Wu, Z.L. Wang, J.H. He, Y.H. Chu, and Y.L. Chueh, ACS Nano DOI: 10.1021/nn300370m.
    連結:
  96. [21] D. Wu, Q. Zhou, K. Kirk. Shung, S. N. Bharadwaja, D. Zhang, and H. Zheng, J. Am. Ceram. Soc. 92, 1276 (2009).
    連結:
  97. [1] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, Adv. Mater. 15, 353 (2003).
  98. [3] P. D. Yang, R. Yan, and M. Fardy, Nano Lett.10, 1529 (2010)
  99. [4] P. Avouris, M. Freitag, and V. Perebeinos, Nature Photonics 2, 341 (2008).
  100. [6] G. Rivas, O. L. Muskens, M. T. Borgstrom, S. L. Diedenhofen, and E. P. A. M. Bakkers, One-Dimensional Nanostructures, Z. M. Wang,ed (Springer, 2008) Vol. 3, Ch.6.
  101. [7] C. Y. Chen, M. W. Chen, J. J. Ke, C. A. Lin, J. R. D. Retamal, and J. H. He, Pure Appl. Chem. 82, 2055 (2008).
  102. [11] C. Soci, A. Zhang, X. Y. Bao , H. Kim, Y. Lo, and D. Wang, J. Nanosci. Nanotechnol. 10, 1 (2010).
  103. [12] N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, 1st ed., (Wiley, 2006).
  104. [13] P. Lalanne and M. Hutley, Artificial Media Optical Properties - Subwavelength Scale, in Encyclopedia of Optical Engineering, (Dekker, 2003, pp. 62–71)
  105. Chapter 2
  106. [2] J. H. He, S T. Ho, T. B. Wu, L .J. Chen, and Z. L. Wang, Chem. Phys. Lett. 435, 119 (2007).
  107. [3] M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, Opt. Express 18, 14836 (2010).
  108. [4] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, Appl. Phys. Lett. 94, 191103 (2009).
  109. [7] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. Zeng, Y. Bando, and D. Golberg, Sensors 9, 6504 (2009).
  110. [8] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Frchet, and P. Yang, Nano Lett. 10, 334 (2010).
  111. [9] L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, Adv. Energy Mater. 1, 506 (2011).
  112. [12] J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, and C.M. Lieber, Science 293, 1455 (2001).
  113. [13] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003).
  114. [14] C. X. Shan, Z. Liu, and S. K. Hark, Phys. Rev. B 74, 153402 (2006).
  115. [15] H. Y. Chen, Y. C. Yang, H. W. Lin, S. C. Chang, and S. Gwo, Opt. Express 16, 13465 (2008).
  116. [16] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, J. Phys. Chem. B 107, 8816 (2003).
  117. [17] H. Y. Li, S. Ruhle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, Nano Lett. 9, 3515 (2009).
  118. [18] H. Pettersson, J. Tragardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, Nano Lett. 6, 229 (2006).
  119. [19] N. Kunzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, Opt. Lett. 26, 1265 (2001).
  120. [20] M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. Krauss, Opt. Express 13, 5040 (2005).
  121. [21] M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, Phys. Rev. Lett. 93, 040504 (2004).
  122. [22] M. L. Markham, J. J. Baumberg, D. C. Smith, X. Li, T. Gabriel, G. S. Attard, and I. Nandhakumar, Appl. Phys. Lett. 86, 011912 (2005).
  123. [23] D. Celo, E. Post, M. Summers, T. Smy, M. J. Brett, and J. Albert, Opt. Express 17, 6655 (2009).
  124. [25] O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivasa, Appl. Phys. Lett. 89, 233117 (2006).
  125. [27] W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, Science 268, 845 (1995).
  126. [28] E. Hecht, Optics, 4th ed., (Addison-Wesley, Boston, 2002; Ch.8).
  127. [29] A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, J. Appl. Phys. 102, 013517 (2007).
  128. [30] S. M. Wang, G. D. Xia, X. Y. Fu, H. B. He, J. D. Shao, and Z. X. Fan, Thin Solid Films 515, 3352 (2007).
  129. [31] K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, Adv. Funct. Mater. 18, 2147 (2008).
  130. [32] X. D. Xiao, G. P. Dong, Z. X. Fan, K. Yi, H. B. He, and J. D. Shao, J. Phys. D: Appl. Phys. 42, 165305 (2009).
  131. [33] H. Qi, X. Xiao, H. He, K. Yi, and Z. Fan, Appl. Opt. 48, 127 (2009).
  132. [36] Q. H. Wu and I. J. Hodgkinson, Opt. Photon. News 5, S9 (1994).
  133. [37] I. J. Hodgkinson and Q. H. Wu, Birefringent thin films and polarizing elements, (World Scientific Press, 1997).
  134. [41] B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, J. Opt. A: Pure Appl. Opt. 9, 457 (2007).
  135. [42] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 5, 1231 (2005).
  136. [44] N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, 1st ed., (Wiley, 2006).
  137. [45] P. Lalanne and M. Hutley, Artificial Media Optical Properties - Subwavelength Scale, in Encyclopedia of Optical Engineering, (Dekker, 2003, pp. 62–71)
  138. [46] I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, and J. J. Wharton, J. Opt. Soc. Am. A 2, 1693 (1985).
  139. [49] H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, Opt. Express 16, 8106 (2008).
  140. [50] W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, J. Phys. Chem. Solids 58, 853 (1997).
  141. [51] Y. J. Jen, and C. C. Lee, Opt. Lett. 26, 190 (2001).
  142. [54] G. Rivas, O. L. Muskens, M. T. Borgstrom, S. L. Diedenhofen, and E. P. A. M. Bakkers, One-Dimensional Nanostructures, Z. M. Wang,ed (Springer, 2008) Vol. 3, Ch.6.
  143. [57] H. E. Ruda and A. Shik, J. Appl. Phys. 100, 024314 (2006).
  144. [58] J. Giblin, V. Protasenko, and M. Kuno, ACS Nano 3, 1979 (2009).
  145. [59] J. Zhang, A. A. Lutich, J. Rodriguez-Fernandez, A. S. Susha, A. L. Rogach, F. Jackel, and J. Feldmann, Phys. Rev. B 82, 155301 (2010).
  146. [62] Y. Gu, I. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Appl. Phys. Lett. 85, 3833 (2004).
  147. Chapter 3
  148. [1] C. Y. Chen, M. W. Chen, J. J. Ke, C. A. Lin, J. R. D. Retamal, and J. H. He, Pure Appl. Chem. 82, 2055 (2008).
  149. [2] C. M. Lieber and Z. L. Wang, MRS Bull. 32, 99 (2007).
  150. [4] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang, Appl. Phys. Lett. 94, 191103 (2009).
  151. [5] L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 22, 5145 (2010).
  152. [6] W. Park, G. Jo, W. K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, Nanotechnology 22, 205204 (2011).
  153. [7] H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. Y. Chen, M. Madsen, A. C. Ford, Y. L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, Nature 468, 286 (2010).
  154. [8] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
  155. [9] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, Nanotechnology 20, 185605 (2009).
  156. [11] J. H. He, C. H. Ho, and C. Y. Chen, Nanotechnology 20, 065503 (2009).
  157. [13] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009).
  158. [14] C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, D. Wang, J. Nanosci. Nanotechnol. 10, 1430 (2010).
  159. [18] B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
  160. [19] M. W. Allen, M. M. Alkaisi, and S. M. Durbin, Appl. Phys. Lett. 89, 103520 (2006).
  161. [20] Y. Dong, Z. Q. Fang, D. C. Look, G. Cantwell, J. Zhang, J. J. Song, and L. J. Brillson, Appl. Phys. Lett. 93, 072111 (2008).
  162. [21] S. N. Das, J. H. Choi, J. P. Kar, K. J. Moon, T. II Lee, J. M. Myoung, Appl. Phys. Lett. 96, 092111 (2010).
  163. [24] C. I Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
  164. [25] M. H. Chen, Y. H. Chen, C. T. Lin, G. R. Lee, C. I Wu, D. S. Leem, J. J. Kim, and T. W. Pi, J. Appl. Phys. 105, 113714 (2009).
  165. [27] B. J. Coppa, C. C. Fulton, P. J. Hartlieb, R. F. Davis, B. J. Rodriguez, B. J. Shields, and R. J. Nemanich, J. Appl. Phys. 95,5856 (2004).
  166. [29] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, and H. Luth, Nano Lett. 5, 981 (2005).
  167. [30] C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Express 16, 16916 (2008).
  168. [31] M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, Opt. Express 18, 14836 (2010).
  169. [32] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005).
  170. [33] K. M. Tracy, P. J. Hartlieb, S. Einfeldt, R. F. Davis, E. H. Hurt, and R. J. Nemanich, J. Appl. Phys. 94, 3939 (2003).
  171. [34] B. J. Coppa, C. C. Fulton, S. M. Kiesel, R. F. Davis, C. Pandarinath, J. E. Burnette, and R. J. Nemanich, J. Appl. Phys. 2005, 103517 (2005).
  172. [35] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).
  173. [36] K. Jacobi, G. Zwicker, and A. Gutmann, Surf. Sci. 141, 109 (1984).
  174. [37] S. K. Hong, T. Hanada, H. Makino, Y. Chen, H. J. Ko, A. Tanaka, H. Sasaki, and S. Sato, Appl. Phys. Lett. 78, 3349 (2001).
  175. [38] A. Klein, F. Sauberlich, B. Spath, T. Schulmeyer, and D. Kraft, J. Mater. Sci. 42, 1890 (2007).
  176. [39] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).
  177. [40] H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
  178. Chapter 4
  179. [1] Y. Ishikawa, M. Okamoto, S. Tanaka, D. Nezaki, and N. Shibata, J. Mater. Res. 20, 2578 (2005).
  180. [2] K. Takahei and A. Taguchi, J. Appl. Phys. 74, 1979 (1993).
  181. [3] P. N. Favennec, H. L'Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, Jpn. J. Appl. Phys. 29, L524 (1990).
  182. [5] P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and T. Le Guillou, Electron. Lett. 25, 718 (1989).
  183. [6] Y. Terai, K. Yamaoka, T. Yamaguchi, and Y. Fujiwara, J. Vac. Sci. Technol. B 27, 2248 (2009).
  184. [7] J. W. Lo, C. A. Lin, and J. H. He, Current Nanoscience 7, 282 (2011)..
  185. [8] J. Wang, M. J. Zhou, S. K. Hark, Q. Lia, D. Tang, M. W. Chu, and C. H. Chen, Appl. Phys. Lett. 89, 221917 (2006).
  186. [9] W. C. Yang, C. W. Wang, J. C. Wang, Y. C. Chang, H. C. Hsu, T. E. Nee, L. J. Chen, and J. H. He, J. Nanosci. Nanotechnol. 8, 3363 (2008).
  187. [11] E. Sonder, R. A. Zhur, and R. E. Valiga, J. Appl. Phys. 64, 1140 (1998).
  188. [12] C. W. Wang, J. H. He, and L. J. Chen, J. Mater. Sci. Technol. 24, 633 (2008),
  189. [13] X. Fang, Y. Bando, U. K. Gautam, C. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008)
  190. [14] X. Fang, Y. Bando, U. K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, and D. Golberg, Crit. Rev. Solid State Mat. Sci. 34, 190 (2009)
  191. [15] M. Ishii, S. Komuro T. Morikawa, and Y. Aoyagi, J. Appl. Phys. 89, 3679 (2001).
  192. [16] M. Ishii, S. Komuro, T. Morikawa, Y. Aoyagi, T. Ishikawa, and T. Ueki, Jpn. J. Appl. Phys. Suppl. 38, 191 (1999).
  193. [17] M. Ishii, T. Ishikawa, T. Ueki, S. Komuro, T. Morikawa, Y. Aoyagi, and H. Oyanagi, J. Appl. Phys. 85, 4024 (1999).
  194. [18] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, Nanotechnology 20, 185605 (2009).
  195. [19] J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen, and Z. L. Wang, Crystal Growth & Design 9, 17 (2009).
  196. [21] J. R. Schneck, E. Bellotti, P. Lamarre, and L. D. Ziegler, Appl. Phys. Lett. 93, 102111 (2008).
  197. [22] R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, J. Appl. Phys. 88, 3454 (2000).
  198. [23] J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 84, 3462 (2004).
  199. [24] J. H. Guo, L. Vayssieres, C. Persson, R. Ahuja, B. Johansson, and J. Nordgren, J. Phys. Condens. Matter. 14, 6969 (2002).
  200. [25] E. Y. M. Lee, N. Tran, J. Russell, and R. N. Lamb, J. Appl. Phys. 92, 2996 (2002).
  201. [27] J. W. Chiou, C. L. Yueh, J. C. Jan, H. M. Tsai, W. F. Pong, I. H. Hong, R. Klauser, M. H. Tsai, Y. K. Chang, Y. Y. Chen, C. T. Wu, K. H. Chen, S. L. Wei, C. Y. Wen, L. C. Chen, and T. J. Chuang, Appl. Phys. Lett. 81, 4189 (2002).
  202. [29] A. Terrasi, G. Franzo, S. Coffa, F. Priolo, F. D'Acapito, and S. Mobilio, Appl. Phys. Lett. 70, 1712 (1997).
  203. [30] T. Yamamoto, T. Tanaka, T. Matsuyama, T. Funabiki, and S. Yoshida, Solid State Commun. 111, 137 (1999)
  204. [1] D. H. Weber, A. Beyer, B. Volkel, A. Golzhauser, E. Schlenker, A. Bakin, and A. Waag, Appl. Phys. Lett. 91, 253126 (2007).
  205. [3] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature (London) 409, 66 (2001).
  206. [6] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang, and G. Bao, J. Appl. Phys. 102, 084303 (2007).
  207. [8] K. F. Huo, Y. M. Hu, J. J. Fu, X. B. Wang, P. K. Chu, Z. Hu, and Y. Chen, J. Phys. Chem. C. 111, 5876 (2007).
  208. [10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang Nat. Mater. 4, 455 (2005).
  209. [12] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, and Z. L. Wang, J. Phys. Chem. B 110, 50 (2006).
  210. [14] S. Z. Li, C. L. Gan, H. Cai, C. L. Yuan, J. Guo, P. S. Lee, and J. Ma, Appl. Phys. Lett. 90, 263106 (2007).
  211. [15] W. I. Park, J. Yoo, D. W. Kim, G. C. Yi, and M. Kim, J. Phys. Chem. B 110, 1516 (2006).
  212. [16] Y. H. Park, Y. H. Shin, S. J. Noh, Y. Kim, S. S. Lee, C. G. Kim, K. S. An, and C. Y. Park Appl. Phys. Lett. 91, 012102 (2007).
  213. [17] J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, Nanotechnology 19, 305202 (2008).
  214. [18] S. U. Yuldashev, S. W. Choi, T. W. Kang, and L. A. Nosova, J. Korean Phys. Soc. 42, s216 (2003).
  215. [19] C. H. Bae, S. M. Park, S. C. Park, and J. S. Ha, Nanotechnology 17, 381 (2006).
  216. [20] W. C. Yang, C. W. Wang, J. H. He, Y. C. Chang, J. C. Wang, L. J. Chen, H. Y. Chen, and S. Gwo, Phys. Stat. Sol. (a) 205, 1190 (2008).
  217. [21] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. D. Yang, Inorg. Chem. 45, 7535 (2006).
  218. [23] T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, Appl. Phys. Lett. 89, 182107 (2006).
  219. [24] G. H. Schoenmakers, D. Vanmaekelbergh, and J. J. Kelly, J. Phys. Chem. 100, 3215 (1996).
  220. [25] J. H. He, C. H. Ho, and C. Y. Chen, Nanotechnology 20, 065503 (2009).
  221. [26] Y. J. Lin and C. L. Tsai, J. Appl. Phys. 100, 113721 (2006).
  222. [27] I. Shalish, H. Temkin and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004).
  223. [30] Z. C. Feng, A. Mascarenhas and W. J. Choyke, J. Lumin. 35, 329 (1986).
  224. [1] C. Y. Chen, M. W. Chen, J. J. Ke , C. A. Lin, J. R. D. Retamal, and J. H. He, Pure and Appl. Chem. 82, 2055 (2010).
  225. [4] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).
  226. [6] T. Zhai, X. Fang , M. Liao , X. Xu , H. Zeng , B. Yoshio and D. Golberg, Sensors 9, 6504 (2009).
  227. [7] J. Zhou, Y. Gu, Youfan Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, Appl. Phys. Lett. 94, 191103 (2009).
  228. [8] K. W. Liu, M. Sakurai, M. Y. Liao, and M. Aono, J. Phys. Chem. C 114, 19835 (2010).
  229. [9] M. W. Chen, J. R. D. Retamal, C. Y. Chen, and J. H. He, IEEE Electron Dev. Lett. (in press) (DOI:EDL-2011-11-2031).
  230. [10] M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, Optics Express 18, 14836 (2010).
  231. [14] Z. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, Adv. Mater. 21, 3730 (2009).
  232. [15] C. M. Lieber and Z. L. Wang, MRS Bull. 32, 99 (2007).
  233. [17] X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, Adv. Mater. 21, 2034 (2009).
  234. [18] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang, and G. Bao, J. Appl. Phys. 102, 084303 (2007).
  235. [19] C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, J. Am. Chem. Soc. 129, 12096 (2007).
  236. [20] L. Li, H. Q. Wang, X. S. Fang, T. Y. Zhai, Y. Bando, and D. Golberg, Energy Environ. Sci. 4, 2586 (2011).
  237. [21] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
  238. [22] Y. Cui and C. M. Lieber, Science 291, 851 (2001).
  239. [23] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85, 7884 (1999).
  240. [24] S. M. Peng, Y. K. Su, L. W. Ji, C. Z. Wu, W. B. Cheng, and W. C. Chao, J. Phys. Chem. C 114, 3204 (2010).
  241. [5] Z. L.Wang and J. H. Song, Science 312, 242 (2006).
  242. [6] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L.Wang, Nano Lett. 3, 1223 (2009).
  243. [7] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, Nat. Nanotech. 4, 34 (2009).
  244. [8] S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim, and J. M. Kim, Adv. Mater. 22, 4726 (2010).
  245. [9] Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, J. Mater. Chem. 19, 9260 (2009).
  246. [10] Y. F. Lin, J. H. Song, Y. Ding, S. Y. Liu, and Z. L. Wang, Appl. Phys. Lett. 92, 022105 (2008).
  247. [11] M. Y. Lu, J. H. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, ACS Nano 3, 357 (2009).
  248. [12] X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett. 10, 2133 (2010).
  249. [13] Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, and M. C. McAlpine, Nano Lett. 11, 1331 (2011).
  250. [17] X. Wang, J. Song, F. Zhang, C. He, Z.Hu, and Z. L. Wang, Adv. Mater. 22, 2155 (2010).
  251. [20] J. Zhou, N. S. Xu, and Z. L.Wang, Adv. Mater. 18, 2432 (2006).
  252. [22] S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, Adv. Mater. 22, 4749 (2010).
  253. [24] J. H. He, C. H. Ho, and C. Y. Chen, Nanotechnology 20, 065503 (2009).
  254. [25] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, ACS Nano. 4, 6285 (2010).
  255. [26] M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, Opt. Express 18, 14837 (2010).
  256. [27] Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang, Adv. Mater. 22, 3327 (2010).
  257. [31] Y. Gao and Z. L. Wang, Nano Lett. 9, 1103 (2009).
  258. [34] Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, Nano Lett. 10, 5025 (2010).
  259. [3] M. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong, and Z. L. Wang, Energy Environ. Sci. 4, 3359 (2011).
  260. [7] Y. F. Lin, J. Song, Y. Ding, S. Y. Liu, and Z. L. Wang, Appl. Phys. Lett. 92, 022105 (2008).
  261. [8] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z.L. Wang, Adv. Mater. 22, 4008 (2010).
  262. [9] W. S. Su, Y. F. Chen, C. L. Hsiao, and L.W. Tu, Appl. Phys. Lett. 90, 063110 (2007).
  263. [12] S. Xu, B. J. Hansen, and Z. L. Wang, Nat. Commun. 1, 93 (2010).
  264. [13] X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett. 10, 2133 (2010).
  265. [15] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nat. Nanotechnol. 5, 366 (2010).
  266. [17] Z. X. Zhu, J. F. Li, F. P. Lai, Y. Zhen, Y. H. Lin, C.W. Nan, L. Li, and J. Li, Appl. Phys. Lett. 91, 222910 (2007).
  267. [18] L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhun, and M. Alexe, Phys. Rev. B 75, 104103 (2007).
  268. [19] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas, and J. T. Evans, Appl. Phys. Lett. 66, 484 (1995).
  269. [20] Y. Gao, and Z. L. Wang, Nano Lett. 9, 1103 (2009).
  270. [22] R. S. Yang, Y. Qin, L. M. Dai, and Z. L. Wang, Nat. Nanotechnol. 4, 34 (2009).
  271. [23] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, Nano Lett. 9, 1223 (2009).