题名

以車載光達技術輔助公路路面特徵模型建構

并列篇名

Reconstruction of Road Surface Features by Terrestrial Mobile LiDAR Technique

DOI

10.6342/NTU.2014.00815

作者

蔡孟儒

关键词

車載光達系統 ; 路面特徵資料庫 ; 模板匹配 ; 分類品質指標 ; 誤差預算分析 ; Terrestrial Mobile LiDAR System ; Road Surface Features ; Template Matching ; Feature Reconstruction ; Error Budget Analysis

期刊名称

國立臺灣大學土木工程學系學位論文

卷期/出版年月

2014年

学位类别

碩士

导师

韓仁毓

内容语文

繁體中文

中文摘要

車載光達系統具備機動性高且可快速獲取大量三維空間資訊的優勢,已廣泛應用於工程領域。而隨著交通建設發展與都市擴張,道路特徵日益複雜且攸關用路人安全,加上近年來所興起自動駕駛系統、三維數位城市以及導航圖資更新等皆須引入路面特徵資料規畫,因此建立自動化的道路模型建構技術顯得格外重要。本研究目標為發展一套以車載光達技術為主的公路路面特徵建構流程,研究中首先利用兩階段非路面點雲濾除程序萃取路面,接著將點雲影像化並引入「分治法」演算概念,將反射強度影像自動二值化,此外配合型態影像處理、物件標記等方式將候選物件群聚分析與編組,並透過主成分分析將候選物件定向,最後再以模版匹配完成物件的辨識與萃取。數值實驗成果顯示,透過本研究所建立之自動化處理流程可快速將車載光達點雲之路面特徵物件分類萃取,各式路面特徵之分類成果品質皆可達約90%,此外透過誤差預算分析可掌握各項資料處理程序所造成錯誤分類之比例,再搭配適當改進策略後將可進一步提升分析品質,使建構之技術能更具體落實於交通與都市工程應用實務。

英文摘要

The advantage of Mobile Mapping System lies in its high mobility and efficiency in collecting massive 3D spatial information. Therefore, it has been applies in many fields of engineering frequently. As urban roads expand over time, road surface features have become more complicated and critical to driving safety. In addition, road surface features are also applied to the fields of autonomous vehicle system, 3D cyber city construction, and navigation information renewal. Therefore, constructing a road surface feature database by an automatic process is especially important. In this study, a fully automatic reconstruction of road surface features based on terrestrial mobile LiDAR technique is proposed. The complete analysis steps are developed and an experiment has been carried out using real LiDAR dataset in a case study. The results revealed that an efficient road surface reconstruction can be achieved using the proposed approach, giving a generally 90% classification accuracy. Finally, through the error budget analysis, the uncertainty associated with each analyzing stage can be explicitly assessed. As a consequence, the system configuration can be further optimized and the resulting quality of the proposed approach can be assured.

主题分类 工學院 > 土木工程學系
工程學 > 土木與建築工程
参考文献
  1. 交通部運研所(2011),全國公路基本資料庫影像更新計畫.
    連結:
  2. Chen, X., Kohlmeyer, B., Stroila, M., Alwar, N., Wang, R., & Bach, J. (2009). Next generation map making: georeferenced groundlevel lidar point clouds for automatic retroreflective road feature extraction. 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 488 - 491.
    連結:
  3. Danescu, R., & Nedevschi, S. (2010). Detection and classification of painted road objects for intersection assistance applications. International IEEE Conference on Intelligent Transportation Systems (ITSC), 433 - 438.
    連結:
  4. Fan, H., Yao, W., & Tang, L. (2014). Identifying man-made objects along urban road corridors from mobile lidar data. IEEE, Geoscience and Remote Sensing Letters, 11(5).
    連結:
  5. Han, J.Y., Guo, J., & Jiang,Y.S. (2013). Monitoring tunnel profile by means of multi-epoch dispersed 3-d lidar point clouds. Tunnelling and Underground Space Technology, 186 - 192.
    連結:
  6. Jaakkola, A., Hyyppa, J., Hyyppa, H., & Kukko, A. (2008). Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors, 8(9), 5238 - 5249.
    連結:
  7. Kheyrollahi, A., & Breckon, T. P. (2012). Automatic real-time road marking recognition using a feature driven approach. Machine Vision and Applications, 23(1), 123 - 133.
    連結:
  8. Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybernet. SMC-9, 62 - 66.
    連結:
  9. Otterman, J.W., G.H. (1984). Reflection from a field of randomly located vertical protrusions. Applied Optics, 23(12), 1931 - 1936.
    連結:
  10. Pu, S., Rutzinger, M., Vosselman, G., & Oude Elberink, S. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66, S28 - S39.
    連結:
  11. Yang, B., Fang, L., Li, Q., & Li, J. (2012). Automated extraction of road markings from mobile lidar point clouds. Photogramm. Eng. Remote Sensing, 78(4), 331 - 338.
    連結:
  12. 中興測量公司(2013),車載光達系統. http://www.chsurvey.com.tw/page04.html#a3.
  13. 交通部(2010),交通工程手冊.
  14. 交通部公路總局(2013),公路統計資料. http://www.thb.gov.tw/TM/Webpage.aspx?entry=70.
  15. 內政部營建署(2009),市區道路及附屬工程設計規範. http://myway.cpami.gov.tw/way/upload/cht/article/015.pdf.
  16. 林彥廷、韓仁毓(2013)。光達反射強度時間變異分析. 第32屆測量及空間資訊研討會暨第2屆兩岸重力及大地水準面研討會論文集, (on USB).
  17. 花蓮市政府(2013),路面維護系統-市民報馬仔報修系統. http://dp.hualien.gov.tw/Repair/Apply#RepairType
  18. 新北市政府(2013),路面維護系統-路平報馬仔. http://rdm.ntpc.gov.tw/Road/NewCase.aspx.
  19. Boehler, W., Heinz, G., & Marbs, A. (2001). The Potential of Non-Contact Close Range Laser Scanners for Cultural Heritage Recording. Proceeding of CIPA International Symposium, Potsdam, Germany.
  20. Carnaby, B. (2005). Poor road markings contribute to crash rates. Australasian Road Safety Research Policing Education Conference, (on CD-ROM).
  21. Clode, S., Kootsookos, P., & Rottensteniner, F. (2004). The automatic extraction of roads from lidar data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35 (Part B3) , 231 - 236.
  22. Colin, M., P, F., & Timothy D.B. (2011). Towards Appearance-Based Methods for Lidar Sensors. IEEE, International Conference Center ternational Conference on Robotics and Automation, Shanghai, China, 1930 - 1935.
  23. Conforti, D., & Zampa, F. (2011). Lynx mobile mapper for surveying city centers and highways. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38 (5/W16), ISPRS Trento Workshop.
  24. Denis, E., Burck, R., & Baillard, C. (2010). Towards road modelling from terrestrial laser points. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 3A), 293 - 298.
  25. El-Sheimy, N. (1996). The Development of VISAT-a Mobile Survey System for GIS Applications. UCGE Report No. 20101, Development of Geomatics Engineering, The University of Calgary, Canada.
  26. Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 1) , (on CDROM).
  27. Heipke, C., Mayer, H., & Wiedemann, C. (1997). Evaluation of Automatic Road Extraction. International Archives of Photogrammetry and Remote Sensing, 32(3-2W3), 47 - 56.
  28. Puente, I., Gonzalez-Jorge, H., Arias, P., & Armesto, J. (2011). Land-based mobile laser scanning systems: a review. ISPRS workshop, laser scanning, 38, Calgary, Canada.
  29. Rao, R., Konda, A., Opitz, D., & Blundell, S. (2006). Ground surface extraction from side-scan (vehicular) lidar. American Society for Photogrammetry and Remote Sensing.
  30. Smadja, L., Ninot, J., & Gavrilovic, T. (2010). Road extraction and environment interpretation from lidar sensors. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(3).
  31. Vosselman, G., Gorte, B.G.H., Sithole, G., & Rabbani, T. (2004). Recognizing structure in laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 46(8/W2), 33 - 38.
  32. Wang, N., Liu, W., Zhang, C., Yuan, H., & Liu, J. (2009). The detection and recognition of arrow markings recognition based on monocular vision. 21st annual international conference on Chinese control and decision conference, 4416 - 4422.