题名

以卷積神經網路分析部落格社群網站垃圾文章

并列篇名

Spam Filtering on Social Media Posts Using Convolutional Neural Networks

DOI

10.6342/NTU201602340

作者

邱建晴

关键词

社群網站 ; 垃圾文章偵測 ; 卷積神經網路 ; 深度學習 ; Social network ; Spam detection ; Convolutional neural network ; Deep learning

期刊名称

國立臺灣大學工程科學及海洋工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

丁肇隆;張瑞益

内容语文

繁體中文

中文摘要

本論文提出一套基於卷積神經網路的文章過濾系統,針對痞客邦網站的部落格文章進行過濾。文章經本論文提出之系統過濾後可使讀者有更優質的閱讀體驗,也讓研究者有更純淨的繁體中文語料庫做為研究資源。 文章使用預先訓練的詞向量表進行編碼,編碼後訓練卷積神經網路對文章擷取特徵並分類,網路所輸出的分數可以對文章分類,或做為文章優劣程度的指標,其錯誤率為 8.8%,有著比統計模型的 13.7% 更好的成效。我們提供了卷積神經網路之於繁體中文文章分類的訓練方法。 在本論文使用的卷積神經網路之中,我們發現,卷積層中所擷取的特徵,與文章中重要的關鍵字有著高度的相關性。另一方面,文章經卷積與降採樣後的結果,可以直接轉做其他分類工作的輸入特徵,效果優於部分統計特徵。

英文摘要

This thesis proposes a blog spam filtering system, the convolutional neural network (CNN), which aims at filtering the blog posts on Pixnet. The articles that are filtered by the system mentioned in the thesis not only permits readers to have a more excellent reading experience, but also allows researchers to have a more purified traditional Chinese corpus as their resource data. CNN is trained on Pixnet blog dataset by pre-trained word vectors for spam/non-spam classification. The score output of CNN can be considered as an index of spam level, which offers further gains in performance than statistical classification methods (error rate of 8.8% versus 13.7%). CNN configuration for training a traditional Chinese text classifier is reported in detail. One observation in our experimental results is that the feature extracted by each filter in convolutional layer, is highly relevant to important keywords in the articles. On the other hand, the descriptors extracted from our CNN achieved an acceptable performance in another text classification task. The result is better than both roughly-tuned CNN and bag-of-words method.

主题分类 基礎與應用科學 > 海洋科學
工學院 > 工程科學及海洋工程學系
工程學 > 工程學總論
参考文献
  1. [8] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech- anism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.
    連結:
  2. [11]D.H.Hubel and T.N.Wiesel. Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.
    連結:
  3. [13] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.
    連結:
  4. [15] P. Kolari, A. Java, T. Finin, T. Oates, and A. Joshi. Detecting spam blogs: A machine learning approach. In Proceedings of the National Conference on Artificial Intelli- gence, volume 21, page 1351. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
    連結:
  5. [16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing sys- tems, pages 1097–1105, 2012.
    連結:
  6. [17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
    連結:
  7. [22] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746–751, 2013.
    連結:
  8. [25] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision, 42(3):145–175, 2001.
    連結:
  9. [31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.
    連結:
  10. [33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
    連結:
  11. [34] N. Spirin and J. Han. Survey on web spam detection: principles and algorithms. ACM SIGKDD Explorations Newsletter, 13(2):50–64, 2012.
    連結:
  12. [39] Y. Zhang and B. Wallace. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015.
    連結:
  13. [1] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baezayates. Linkbased characterization and detection of web spam. In 2nd International Workshop on Ad- versarial Information Retrieval on the Web, AIRWeb 2006-29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SI- GIR 2006, 2006.
  14. [2] A.Benczúr,I.Bíró,K.Csalogány,andT.Sarlós.Webspamdetectionviacommercial intent analysis. In Proceedings of the 3rd international workshop on Adversarial information retrieval on the web, pages 89–92. ACM, 2007.
  15. [3] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your neigh- bors: Web spam detection using the web topology. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 423–430. ACM, 2007.
  16. [4] K. Chellapilla and D. M. Chickering. Improving cloaking detection using search query popularity and monetizability. In AIRWeb, pages 17–23, 2006.
  17. [5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large- scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.
  18. [6] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and statistics: Using statistical analysis to locate spam web pages. In Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, pages 1–6. ACM, 2004.
  19. [7] D. Fetterly, M. Manasse, and M. Najork. Detecting phrase-level duplication on the world wide web. In Proceedings of the 28th annual international ACM SIGIR confer- ence on Research and development in information retrieval, pages 170–177. ACM, 2005.
  20. [9] Z.Gyöngyi,H.Garcia-Molina,and J.Pedersen.Combating web spam with trustrank. In Proceedings of the Thirtieth international conference on Very large data bases- Volume 30, pages 576–587. VLDB Endowment, 2004.
  21. [10] G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the eighth annual conference of the cognitive science society, volume 1, page 12. Amherst, MA, 1986.
  22. [12] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click fraud resistant methods for learning click-through rates. In Internet and Network Economics, pages 34–45. Springer, 2005.
  23. [14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  24. [18] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. Browserank: letting web users vote for page importance. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 451–458. ACM, 2008.
  25. [19] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre- sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.
  26. [20] T.Mikolov, M.Karafiát, L.Burget, J.Cernockỳ, andS. Khudanpur. Recurrentneural network based language model. In INTERSPEECH, volume 2, page 3, 2010.
  27. [21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre- sentations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119, 2013.
  28. [23] G. Mishne, D. Carmel, R. Lempel, et al. Blocking blog spam with language model disagreement. In AIRWeb, volume 5, pages 1–6, 2005.
  29. [24] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web pages through content analysis. In Proceedings of the 15th international conference on World Wide Web, pages 83–92. ACM, 2006.
  30. [26] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing order to the web. 1999.
  31. [27] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre- sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.
  32. [28] J. Piskorski, M. Sydow, and D. Weiss. Exploring linguistic features for web spam detection: a preliminary study. In Proceedings of the 4th international workshop on Adversarial information retrieval on the web, pages 25–28. ACM, 2008.
  33. [29] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 806–813, 2014.
  34. [30] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/ publication/884893/en.
  35. [32] F. Seide, G. Li, and D. Yu. Conversational speech transcription using context- dependent deep neural networks. In Interspeech, pages 437–440, 2011.
  36. [35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.
  37. [36] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initial- ization and momentum in deep learning. ICML (3), 28:1139–1147, 2013.
  38. [37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van- houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
  39. [38] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, pages 818–833. Springer, 2014.