参考文献
|
-
[8] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech- anism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.
連結:
-
[11]D.H.Hubel and T.N.Wiesel. Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.
連結:
-
[13] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.
連結:
-
[15] P. Kolari, A. Java, T. Finin, T. Oates, and A. Joshi. Detecting spam blogs: A machine learning approach. In Proceedings of the National Conference on Artificial Intelli- gence, volume 21, page 1351. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
連結:
-
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing sys- tems, pages 1097–1105, 2012.
連結:
-
[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
連結:
-
[22] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746–751, 2013.
連結:
-
[25] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision, 42(3):145–175, 2001.
連結:
-
[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.
連結:
-
[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
連結:
-
[34] N. Spirin and J. Han. Survey on web spam detection: principles and algorithms. ACM SIGKDD Explorations Newsletter, 13(2):50–64, 2012.
連結:
-
[39] Y. Zhang and B. Wallace. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015.
連結:
-
[1] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baezayates. Linkbased characterization and detection of web spam. In 2nd International Workshop on Ad- versarial Information Retrieval on the Web, AIRWeb 2006-29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SI- GIR 2006, 2006.
-
[2] A.Benczúr,I.Bíró,K.Csalogány,andT.Sarlós.Webspamdetectionviacommercial intent analysis. In Proceedings of the 3rd international workshop on Adversarial information retrieval on the web, pages 89–92. ACM, 2007.
-
[3] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your neigh- bors: Web spam detection using the web topology. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 423–430. ACM, 2007.
-
[4] K. Chellapilla and D. M. Chickering. Improving cloaking detection using search query popularity and monetizability. In AIRWeb, pages 17–23, 2006.
-
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large- scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.
-
[6] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and statistics: Using statistical analysis to locate spam web pages. In Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, pages 1–6. ACM, 2004.
-
[7] D. Fetterly, M. Manasse, and M. Najork. Detecting phrase-level duplication on the world wide web. In Proceedings of the 28th annual international ACM SIGIR confer- ence on Research and development in information retrieval, pages 170–177. ACM, 2005.
-
[9] Z.Gyöngyi,H.Garcia-Molina,and J.Pedersen.Combating web spam with trustrank. In Proceedings of the Thirtieth international conference on Very large data bases- Volume 30, pages 576–587. VLDB Endowment, 2004.
-
[10] G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the eighth annual conference of the cognitive science society, volume 1, page 12. Amherst, MA, 1986.
-
[12] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click fraud resistant methods for learning click-through rates. In Internet and Network Economics, pages 34–45. Springer, 2005.
-
[14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
-
[18] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. Browserank: letting web users vote for page importance. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 451–458. ACM, 2008.
-
[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre- sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.
-
[20] T.Mikolov, M.Karafiát, L.Burget, J.Cernockỳ, andS. Khudanpur. Recurrentneural network based language model. In INTERSPEECH, volume 2, page 3, 2010.
-
[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre- sentations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119, 2013.
-
[23] G. Mishne, D. Carmel, R. Lempel, et al. Blocking blog spam with language model disagreement. In AIRWeb, volume 5, pages 1–6, 2005.
-
[24] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web pages through content analysis. In Proceedings of the 15th international conference on World Wide Web, pages 83–92. ACM, 2006.
-
[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing order to the web. 1999.
-
[27] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre- sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.
-
[28] J. Piskorski, M. Sydow, and D. Weiss. Exploring linguistic features for web spam detection: a preliminary study. In Proceedings of the 4th international workshop on Adversarial information retrieval on the web, pages 25–28. ACM, 2008.
-
[29] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 806–813, 2014.
-
[30] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/ publication/884893/en.
-
[32] F. Seide, G. Li, and D. Yu. Conversational speech transcription using context- dependent deep neural networks. In Interspeech, pages 437–440, 2011.
-
[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.
-
[36] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initial- ization and momentum in deep learning. ICML (3), 28:1139–1147, 2013.
-
[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van- houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
-
[38] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, pages 818–833. Springer, 2014.
|