题名

受強激振下懸臂樑式壓電振動子之非線性研究

并列篇名

Investigation of Nonlinear Response of a Cantilevered Piezoelectric Oscillator Under Amplified Excitation

DOI

10.6342/NTU201602406

作者

王昱程

关键词

壓電振動能量擷取 ; 微型壓電振動子 ; 非線性振動 ; piezoelectric energy harvesting ; piezoelectric MEMS generator ; nonlinear oscillation ; cantilever beam ; multiple scale analysis

期刊名称

臺灣大學應用力學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

舒貽忠

内容语文

繁體中文

中文摘要

本研究主要探討懸臂樑式壓電振子所具有的不同非線性因素,在強激振的環境下,對於系統整體動態響應所造成的影響。本研究除了探討壓電材料中之非線性組成律外,亦考慮了懸臂樑在大幅度變形時,所出現的幾何非線性與慣性非線性。在尤拉-柏努利與不可伸縮樑的兩種假設下,結合瑞利-里茲近似法(Raleigh-Ritz approximation),最後透過漢米爾頓原理(Hamilton’s principle)推導出壓電懸臂樑的控制方程式。 為進一步了解控制方程式中,各係數對於系統整體所造成的影響,本研究使用了多尺度分析法求解出系統之近似解析解,並定義非線性的等效參數Neff,發現此參數對於懸臂樑振子的動態響應特性上,扮演極為重要之角色。並以實際振子參數,分別使用三種不同形狀函數進行模擬,根據比較結果發現,以懸臂樑於點外力作用下所產生的靜態變形曲線為形狀函數,可作為本研究系統中,控制方程式的係數來源之標準。 接著藉由實驗數據得到的頻率響應曲線,與近似解析解中的頻率響應關係式進行曲線擬合,即可推測出系統的機械阻尼係數以及材料非線性等效係數,並可連同其它等效係數一併進行數值模擬。最後,根據比較結果顯示,本研究所建立的壓電振子數學模型無論是在系統的共振頻率,或是輸出端的電壓峰值預測上,與實驗所得的頻率響應曲線皆具有優異的一致性。

英文摘要

A study of nonlinear vibration of MEMs cantilevered piezoelectric oscillator subjected to intense excitations is presented. Several nonlinear sources within the oscillator will be considered and discussed for the effect to the dynamic response of the system. First, the material nonlinearity in the PZT layer of cantilever beam is considered, the geometrical nonlinearity and inertia nonlinearity which caused by the large deformation of cantilever beam are taken into account in this thesis as well. The derivation of governing equations is based on Hamilton variational principle, together with several assumptions including Euler-Bernoulli beam theory and inextensible beam condition. Reduced-order models by Rayleigh-Ritz approximation are also developed to focus on the first vibration mode of the system. For further understanding of the system, the approximation analytic solution of the system can be obtained by the method of multiple scale analysis. The effective nonlinear parameter Neff defined in the frequency-response equation is found to be a key parameter for the dynamic response of the system. By substituting the real system dimensions into the simulation, the shape function with point load exerted on the end tip of the beam is found to be a choice to become a standard for the effective coefficients of the governing equations. The damping and material nonlinearity coefficients in the governing equations are estimated by the curve fitting via experimental data. A good qualitative agreement is obtained between experimental and numerical results.

主题分类 基礎與應用科學 > 物理
工學院 > 應用力學研究所
参考文献
  1. [1] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics, “ IEEE Pervasive Computing, Vol. 4, pp.18-27, 2005.
    連結:
  2. [3] P. D. Mitcheson, T. C. Green, E. M. Yeatman and A. S. Holmes, “Architectures for vibration-driven micropower generators,” Journal of Microelectromechanical Systems, Vol. 13, pp.429-440, 2004.
    連結:
  3. [4] R. N. Torah, S. P. Beeby, M. J. Tudor, T. O’Donnell and S. Roy, “Development of a cantilever beam generator employing vibration energy harvesting,” 2006.
    連結:
  4. [5] S. Roundy, P. K. Wright and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, Vol. 26, pp.1131-1144, 2003.
    連結:
  5. [7] Y. C. Shu and I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems,” Smart Materials & Structures, Vol. 15, pp.1455-1512, 2006.
    連結:
  6. [8] 林順區, “利用不鏽鋼基板製作壓電懸臂樑式微型能量擷取元件之研究.”台灣大學工程科學海洋研究所博士論文, 2014.
    連結:
  7. [9] A. Khan, Z. Abas and H. S. Kim, “Piezoelectric thin films: an integrated review of transducers and energy harvesting,” Smart Materials and Structures, Vol. 25, 053002, 2016.
    連結:
  8. [10] D. Guyomar, A. Badel and E. Lefeuvre, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, pp.584–595, 2005.
    連結:
  9. [11] I. C. Lien and Y. C. Shu, “Array of piezoelectric energy harvesting by equivalent impedance approach,” Smart Materials and Structures, Vol. 21, 082001, 2012.
    連結:
  10. [13] H. C. Lin, P. H. Wu, I. C. Lien and Y. C. Shu, “Analysis of an array of piezoelectric energy harvesters connected in series,” Smart Materials & Structures, Vol. 22, 094026, 2013.
    連結:
  11. [14] A. Erturk, J. Hoffmann and D. J. Inman, “A piezomagnetoelastic structure for broadband vibration energy harvesting,” Applied Physics Letters, Vol. 94, 254102, 2009.
    連結:
  12. [15] G. Sebald, H. Kuwano, D. Guyomar and B. Ducharne, “Experimental Duffing oscillator for broadband piezoelectric energy harvesting,” Smart materials and Structures, Vol. 20, 102001, 2011.
    連結:
  13. [16] G. Sebald, H. Kuwano, D. Guyomar and B. Ducharne, “Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting,” Smart Materials and Structures, Vol. 20, 075022, 2011.
    連結:
  14. [17] F. Cottone, M. Mattarelli, H. Vocca and L. Gammaitoni, “Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting,” The European Physical Journal, Vol. 224, pp.2855-2866, 2015.
    連結:
  15. [18] Y. B. Jeon, R. Sood, J. H. Jeong and S. G. Kim, “MEMS power generator with transverse mode thin film PZT.” Sensors and Actuators A, Vol. 122, pp.16-22, 2005.
    連結:
  16. [19] E. E. Aktakka, “A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes.” IEEE Journal of Solid-State Circuits, Vol. 49, no. 9, 2014.
    連結:
  17. [20] S. N. Mahmoodi and N. Jalili, “Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers.” International Journal of Non-Linear Mechanics, Vol. 42, pp.577-578, 2007.
    連結:
  18. [21] M. Rezaeisaray, M. E. Gowini, D. Sameoto, D. Raboud and W. Moussa, “Wide-bandwidth piezoelectric energy harvester with polymeric structure,” Journal of Micromechanics and Microengineering, Vol. 25, 015018, 2015.
    連結:
  19. [22] S. C. Lin and W. J. Wu, “Piezoelectric micro energy harvesters based on stainless-steel substrates.” Smart materials and Structures, Vol. 22, 045016, 2013.
    連結:
  20. [23] M. R. M. Crespo da Silva and C. C. Glynn, “Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of Motion,” Journal of Structural Mechanics, Vol. 6, pp.437-448, 1978.
    連結:
  21. [24] M. R. M. Crespo da Silva and C. C. Glynn, “Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced Motions.” Journal of Structural Mechanics, Vol. 6, pp.449-461, 1978.
    連結:
  22. [25] P. Ribeiro, “Free periodic vibrations of beams with large displacements and initial plastic strains.” International Journal of Mechanical Sciences, Vol. 52, pp.1407-1418, 2010.
    連結:
  23. [26] S. C. Stanton, A. Erturk, B. P. Mann and D. J. Inman, “Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification.” Journal of Applied Physics, Vol. 108, 074903, 2010.
    連結:
  24. [27] St. Leadenham and A. Erturk, “Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation.” Nonlinear Dynamics, Vol. 79, pp.1727-1743, 2015.
    連結:
  25. [28] G. Duffing, “Erzwungene Schwingung bei veränderlicher Eigenfrequenz und ihre technische Bedeutung,” Vieweg, Braunschweig, 1918.
    連結:
  26. [29] H. F. Tiersten, “Hamilton's principle for linear piezoelectric media,” Proceedings of the IEEE , Vol. 55, pp.1523-1524, 1967.
    連結:
  27. [31] D. Guyomar, N. Aurelle and L. Eyraud, “Piezoelectric ceramics nonlinear behavior. application to langevin transducer,” Journal of Physics France, Vol. 7, pp.1197-1208, 1997.
    連結:
  28. [34] M. F. Lumentut and I. M. Howard, “Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations,” Smart Materials and Structures, Vol. 23, 095037, 2014.
    連結:
  29. [35] A. H. Nayfeh, Introduction to perturbation techniques, Wiley, 1993.
    連結:
  30. [36] A. Erturk and D. J. Inman, Piezoelectric energy harvesting, Wiley, 2011.
    連結:
  31. [37] A. H. Nayfeh and P. F. Pai, “Non-linear non-planar parametric responses of an inextensional beam,” Non-Linear Mechanics, Vol. 24, pp.139-158, 1989.
    連結:
  32. [38] 黃亭瑋, “微壓電振動子應用於能量擷取之理論與實驗驗證,”台灣大學應用力學工程研究所碩士論文, 2014.
    連結:
  33. [39] J. E. Kim and Y. Y. Kim, “Analysis of piezoelectric energy harvesters of a moderate aspect ratio with a distributed tip mass,” The American Society of Mechanical Engineer, Vol. 113, 041010-1, 2011.
    連結:
  34. [40] M. Kim, M. Hoegen, J. Dugundji and B. L. Wardle, “Modeling and experimental verification of proof mass effects on vibration energy harvester performance.” Smart materials and Structures, Vol. 19, 045023, 2010.
    連結:
  35. [41] S. N. Mahmoodi, N. Jalil and M. F. Daqaq, “Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor,” IEEE/ASME Transactions on Mechatronics, Vol. 13, pp.58-65, 2008.
    連結:
  36. [42] 連益慶, “陣列式壓電能量擷取系統在多種介面電路下之動態特性分析,”台灣大學應用力學所研究所博士論文, 2012.
    連結:
  37. [43] D. Upadrashta and Y. Yang, “Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting,” Journal of Applied Physics, 2016.
    連結:
  38. [2] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V. Sundararajan, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, Vol. 4, pp.28-36, 2005.
  39. [6] H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert and K. H. Schlereth, “New thermoelectric components using microsystems technologies,” Journal of Microelectromechanical Systems, Vol. 13, pp.414-420, 2004.
  40. [12] I. C. Lien and Y. C. Shu, “Array of piezoelectric energy harvesters,” Proc. Active and Passive Smart Structures and Integrated Systems, Proc. SPIE Vol. 7977, 79770K, 2011.
  41. [30] H. F. Tiersten, Linear piezoelectric plate vibrations, Plenum Press, New York, 1969.
  42. [32] C. Lanczos, The variational principles of mechanics, University of Toronto Press, Toronto, 1952.
  43. [33] A. H. Nayfeh and P. F. Pai, Linear and nonlinear structural mechanics, Wiley, 2004.
被引用次数
  1. 林莛凱(2017)。提升氣膠沉積法製作之鋯鈦酸鉛(PZT)微型壓電能量擷取器元件效能之研究與實作。國立臺灣大學工程科學及海洋工程學系學位論文。2017。1-104。