题名

拉脹性方塊於可調功能熱超穎材料之實現

并列篇名

Realization of Thermal Metamaterials with Tunable Functionalities by Auxetic Squares

DOI

10.6342/NTU201703054

作者

陳柏戎

关键词

轉換熱學 ; 熱超穎材料 ; 熱遮蔽 ; 熱集中 ; 拉脹性 ; Transformation thermodynamics ; Thermal metamaterials ; Thermal cloak ; Thermal concentrator ; Auxetic

期刊名称

國立臺灣大學工程科學及海洋工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

黃心豪

内容语文

繁體中文

中文摘要

本研究之內容為可調式熱超穎材料概念之提出,結合拉脹性旋轉方塊之變形機制使原本僅具單一功能之熱超穎材料可達到功能性上的轉換,進而實現具可調功能的熱超穎材料。探討方式以熱超穎材料中最普遍之課題,熱遮蔽裝置,作為可調控功能之研究,經由外力的施加使其能由熱遮蔽裝置轉換為熱集中裝置。其中以商用有限元素軟體進行分析模擬,探討本研究所提出之可調式熱遮蔽-集中裝置其可調性與功能性,亦透過熱傳實驗觀察試體之溫度分佈,並與模擬進行相互印證。本研究提出之可調式熱遮蔽-集中裝置,可調控其內部區域之溫度梯度變化,此外並提出一得到原熱超穎材料轉換後其功能性之方法,作為後續相關研究之使用。

英文摘要

By combining the rotating squares with auxetic property, this study proposed a concept of thermal metamaterials with tunable functionalities. Here we introduce such thermal metamaterial, which can change from a cloak to a concentrator when the metamaterial are subjected to external forces. The proposed dual functional metamaterial can thermally protect a region and transform into a concentrator to focus heat flux in a small region, in both simulation and experimental verification using finite element method and fabricated structures made form copper, epoxy and rotating squares. This work paves the way for a controllable gradient of heat, and also provides guidance for other thermal metamateriasls with tunable functionalities.

主题分类 基礎與應用科學 > 海洋科學
工學院 > 工程科學及海洋工程學系
工程學 > 工程學總論
参考文献
  1. [3] J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, vol. 312, pp. 1780-1782, 2006.
    連結:
  2. [4] G. W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New Journal of Physics, vol. 8, p. 248, 2006.
    連結:
  3. [6] M. Raza, Y. Liu, E. H. Lee, and Y. Ma, "Transformation thermodynamics and heat cloaking: a review," Journal of Optics, vol. 18, p. 044002, 2016.
    連結:
  4. [7] J. Li, Y. Gao, and J. Huang, "A bifunctional cloak using transformation media," Journal of Applied Physics, vol. 108, p. 074504, 2010.
    連結:
  5. [8] M. Mir, M. N. Ali, J. Sami, and U. Ansari, "Review of mechanics and applications of auxetic structures," Advances in Materials Science and Engineering, vol. 2014, 2014.
    連結:
  6. [9] Y. Tang and J. Yin, "Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility," Extreme Mechanics Letters, vol. 12, pp. 77-85, 2017.
    連結:
  7. [10] U. Leonhardt, "Optical conformal mapping," Science, vol. 312, pp. 1777-1780, 2006.
    連結:
  8. [11] N. Stenger, M. Wilhelm, and M. Wegener, "Experiments on elastic cloaking in thin plates," Physical Review Letters, vol. 108, p. 014301, 2012.
    連結:
  9. [13] R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: molding the flow of heat," Physical Review Letters, vol. 110, p. 195901, 2013.
    連結:
  10. [14] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, and A. Starr, "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, pp. 977-980, 2006.
    連結:
  11. [15] C. Fan, Y. Gao, and J. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Applied Physics Letters, vol. 92, p. 251907, 2008.
    連結:
  12. [16] T. Chen, C.-N. Weng, and J.-S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Applied Physics Letters, vol. 93, p. 114103, 2008.
    連結:
  13. [17] S. Guenneau, C. Amra, and D. Veynante, "Transformation thermodynamics: cloaking and concentrating heat flux," Optics Express, vol. 20, pp. 8207-8218, 2012.
    連結:
  14. [18] S. Narayana and Y. Sato, "Heat flux manipulation with engineered thermal materials," Physical Review Letters, vol. 108, p. 214303, 2012.
    連結:
  15. [19] S. Narayana, S. Savo, and Y. Sato, "Transient heat flux shielding using thermal metamaterials," Applied Physics Letters, vol. 102, p. 201904, 2013.
    連結:
  16. [20] T. Han, T. Yuan, B. Li, and C.-W. Qiu, "Homogeneous thermal cloak with constant conductivity and tunable heat localization," Scientific Reports, vol. 3, p. 1593, 2013.
    連結:
  17. [21] T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, "Experimental demonstration of a bilayer thermal cloak," Physical Review Letters, vol. 112, p. 054302, 2014.
    連結:
  18. [23] T. Yang, L. Huang, F. Chen, and W. Xu, "Heat flux and temperature field cloaks for arbitrarily shaped objects," Journal of Physics D: Applied Physics, vol. 46, p. 305102, 2013.
    連結:
  19. [24] L. Sun, Z. Yu, and J. Huang, "Design of plate directional heat transmission structure based on layered thermal metamaterials," AIP Advances, vol. 6, p. 025101, 2016.
    連結:
  20. [26] F. Chen and D. Y. Lei, "Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials," Scientific Reports, vol. 5, 2015.
    連結:
  21. [27] I. Peralta, V. D. Fachinotti, and Á. A. Ciarbonetti, "Optimization-based design of a heat flux concentrator," Scientific Reports, vol. 7, p. 40591, 2017.
    連結:
  22. [28] E. M. Dede, P. Schmalenberg, C.-M. Wang, F. Zhou, and T. Nomura, "Collection of low-grade waste heat for enhanced energy harvesting," AIP Advances, vol. 6, p. 055113, 2016.
    連結:
  23. [29] R. Kiflemariam and C.-X. Lin, "Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices," International Journal of Thermal Sciences, vol. 94, pp. 193-203, 2015.
    連結:
  24. [30] R. Kapadia and P. Bandaru, "Heat flux concentration through polymeric thermal lenses," Applied Physics Letters, vol. 105, p. 233903, 2014.
    連結:
  25. [31] T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, "Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials," Advanced Materials, vol. 26, pp. 1731-1734, 2014.
    連結:
  26. [33] N. Zhu, X. Shen, and J. Huang, "Converting the patterns of local heat flux via thermal illusion device," AIP Advances, vol. 5, p. 053401, 2015.
    連結:
  27. [34] Q. Hou, X. Zhao, T. Meng, and C. Liu, "Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage," Applied Physics Letters, vol. 109, p. 103506, 2016.
    連結:
  28. [35] S. Guenneau and C. Amra, "Anisotropic conductivity rotates heat fluxes in transient regimes," Optics Express, vol. 21, pp. 6578-6583, 2013.
    連結:
  29. [37] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, et al., "Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes," Physical Review Letters, vol. 115, p. 195503, 2015.
    連結:
  30. [38] X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, "Thermal cloak-concentrator," Applied Physics Letters, vol. 109, p. 031907, 2016.
    連結:
  31. [39] X. Shen, Y. Li, C. Jiang, and J. Huang, "Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change," Physical Review Letters, vol. 117, p. 055501, 2016.
    連結:
  32. [40] G. Park, S. Kang, H. Lee, and W. Choi, "Tunable multifunctional thermal metamaterials: manipulation of local heat flux via assembly of unit-cell thermal shifters," Scientific Reports, vol. 7, 2017.
    連結:
  33. [42] K. Billon, I. Zampetakis, F. Scarpa, M. Ouisse, E. Sadoulet-Reboul, M. Collet, et al., "Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials," Composite Structures, vol. 160, pp. 1042-1050, 2017.
    連結:
  34. [43] L. Ai and X.-L. Gao, "Metamaterials with negative poisson’s ratio and non-positive thermal expansion," Composite Structures, vol. 162, pp. 70-84, 2017.
    連結:
  35. [44] P. Bandaru, K. Vemuri, F. Canbazoglu, and R. Kapadia, "Layered thermal metamaterials for the directing and harvesting of conductive heat," AIP Advances, vol. 5, p. 053403, 2015.
    連結:
  36. [45] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Isotropic transformation optics: approximate acoustic and quantum cloaking," New Journal of Physics, vol. 10, p. 115024, 2008.
    連結:
  37. [46] K. P. Vemuri and P. R. Bandaru, "Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials," Applied Physics Letters, vol. 103, p. 133111, 2013.
    連結:
  38. [47] K. Vemuri, F. Canbazoglu, and P. Bandaru, "Guiding conductive heat flux through thermal metamaterials," Applied Physics Letters, vol. 105, p. 193904, 2014.
    連結:
  39. [1] 臺灣電力公司, "臺電歷年發電量佔比," http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13, 2017.
  40. [2] O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, "Single-ion heat engine at maximum power," Physical Review Letters, vol. 109, p. 203006, 2012.
  41. [5] 黄吉平, "奇妙的热超构材料," Physics Teacher, vol. 37, pp. 71-74, 2016.
  42. [12] F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, "DC electric invisibility cloak," Physical Review Letters, vol. 109, p. 053902, 2012.
  43. [22] H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, "Ultrathin three-dimensional thermal cloak," Physical Review Letters, vol. 112, p. 054301, 2014.
  44. [25] E. M. Dede, P. Schmalenberg, T. Nomura, and M. Ishigaki, "Design of anisotropic thermal conductivity in multilayer printed circuit boards," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, pp. 1763-1774, 2015.
  45. [32] S. Xiang-Ying, C. Yi-Xuan, and H. Ji-Ping, "Thermal magnifier and minifier," Communications in Theoretical Physics, vol. 65, p. 375, 2016.
  46. [36] D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, "Active thermal cloak," Applied Physics Letters, vol. 107, p. 121901, 2015.
  47. [41] J. N. Grima, E. Manicaro, and D. Attard, "Auxetic behaviour from connected different-sized squares and rectangles," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 439-458, 2011.