参考文献
|
-
[2] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature nanotechnology, 8(2):119–124, 2013.
連結:
-
[4] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature materials, 6(3):183–191, 2007.
連結:
-
[5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano letters, 8(3):902–907, 2008.
連結:
-
[6] C. Lee, X. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008.
連結:
-
[7] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature nanotechnology, 6(3):147–150, 2011.
連結:
-
[9] Z. Guo, D. Zhang, and X. G. Gong. Thermal conductivity of graphene nanoribbons. Applied physics letters, 95(16):163103, 2009.
連結:
-
[10] J. Hu, X. Ruan, and Y. P. Chen. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano letters, 9(7):2730–2735, 2009.
連結:
-
[11] N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: ademonstration of magic flexibility. Nanotechnology, 22(10):105705, 2011.
連結:
-
[12] C. Zhang, X. L. Hao, C. X. Wang, N. Wei, and T. Rabczuk. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation. Scientific reports, 7, 2017.
連結:
-
[13] T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, and J. Zhong. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology, 21(24):245701, 2010.
連結:
-
[14] Y. C. Chen, S. C. Lee, T. H. Liu, and C. C. Chang. Thermal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering. International Journal of Thermal Sciences, 94:72–78, 2015.
連結:
-
[15] J. Song and N. V. Medhekar. Thermal transport in lattice-constrained 2d hybrid graphene heterostructures. Journal of Physics: Condensed Matter, 25(44):445007, 2013.
連結:
-
[16] X. K. Chen, Z. X. Xie, W. X. Zhou, and K. Q. Chen. The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain. Journal of Physics D: Applied Physics, 49(11):115301, 2016.
連結:
-
[17] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, et al. Two-dimensional phonon transport in supported graphene. Science, 328(5975):213–216, 2010.
連結:
-
[18] I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano letters, 13(2):550–554, 2013.
連結:
-
[19] H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 7(8):1232–1240, 2014.
連結:
-
[20] J. L. Tsai and J. F. Tu. Characterizing mechanical properties of graphite using molecular dynamics simulation. Materials & Design, 31(1):194–199, 2010.
連結:
-
[21] H. Zhao, K. Min, and N. R. Aluru. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano letters, 9(8):3012–3015, 2009.
連結:
-
[22] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci. Monolayer honeycomb structures of group-iv elements and iii-v binary compounds: First-principles calculations. Physical Review B, 80(15):155453, 2009.
連結:
-
[23] M. Topsakal and S. Ciraci. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Physical Review B, 81(2):024107, 2010.
連結:
-
[24] S. Zhao and J. Xue. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. Journal of Physics D: Applied Physics, 46(13):135303, 2013.
連結:
-
[25] C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 20(38):385707, 2009.
連結:
-
[26] Y. Ding, Y. Wang, and J. Ni. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 95(12):123105, 2009.
連結:
-
[27] J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, and W. P. Hu. Transition from insulator tometal induced by hybridized connection of graphene and boron nitride nanoribbons. Applied Physics Letters, 97(19):239, 2010.
連結:
-
[28] Y. Liu, X. Wu, Y. Zhao, X. C. Zeng, and J. Yang. Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. The journal of physical chemistry C, 115(19):9442–9450, 2011.
連結:
-
[29] Z. Yu, M. L. Hu, C. X. Zhang, C. Y. He, L. Z. Sun, and J. Zhong. Transport properties of hybrid zigzag graphene and boron nitride nanoribbons. The Journal of Physical Chemistry C, 115(21):10836–10841, 2011.
連結:
-
[30] H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg. “white graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano letters, 10(12):5049–5055, 2010.
連結:
-
[31] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. The Journal of chemical physics, 27(5):1208–1209, 1957.
連結:
-
[32] A. Rahman. Correlations in the motion of atoms in liquid argon. Physical Review, 136(2A):A405, 1964.
連結:
-
[33] L. Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review, 159(1):98, 1967.
連結:
-
[34] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649, 1982.
連結:
-
[35] J. W. Gibbs. On the equilibrium of heterogeneous substances. American Journal of Science, (96):441–458, 1878.
連結:
-
[36] P. Langevin. Sur la théorie du mouvement brownien. CR Acad. Sci. Paris, 146(530-533):530, 1908.
連結:
-
[37] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 52(2):255-268, 1984.
連結:
-
[38] W. G. Hoover. Canonical dynamics: equilibrium phase-space distributions. Physical review A, 31(3):1695, 1985.
連結:
-
[39] S. Nosé. Constant-temperature molecular dynamics. Journal of Physics: Condensed Matter, 2(S):SA115, 1990.
連結:
-
[40] F. Müller-Plathe. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of chemical physics, 106(14):6082–6085, 1997.
連結:
-
[41] M. Zhang, E. Lussetti, L. E. S. de Souza, and F. Müller-Plathe. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. The Journal of Physical Chemistry B, 109(31):15060–15067, 2005.
連結:
-
[42] R. Clausius. Xvi. on a mechanical theorem applicable to heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(265):122–127, 1870.
連結:
-
[43] J. H. Irving and J. G. Kirkwood. The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. The Journal of chemical physics, 18(6):817–829, 1950.
連結:
-
[44] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1):1–19, 1995.
連結:
-
[45] J. Li. Atomeye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 11(2):173, 2003.
連結:
-
[46] C. Sevik, A. Kınacı, J. B. Haskins, and T. Çağın. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B, 84(8):085409, 2011.
連結:
-
[47] C. Sevik, A. Kınacı, J. B. Haskins, and T. Çağın. Influence of disorder on thermal transport properties of boron nitride nanostructures. Physical Review B, 86(7):075403, 2012.
連結:
-
[48] A. Kınacı, J. B. Haskins, C. Sevik, and T. Çağın. Thermal conductivity of bn-c nanostructures. Physical Review B, 86(11):115410, 2012.
連結:
-
[49] E. Muñoz, J. Lu, and B. I. Yakobson. Ballistic thermal conductance of graphene ribbons. Nano letters, 10(5):1652–1656, 2010.
連結:
-
[50] F. Hao, D. Fang, and Z. Xu. Mechanical and thermal transport properties of graphene with defects. Applied physics letters, 99(4):041901, 2011.
連結:
-
[52] J. W. Kang, J. J. Seo, K. R. Byun, and H. J. Hwang. Defects in ultrathin copper nanowires: Atomistic simulations. Physical Review B, 66(12):125405, 2002.
連結:
-
[53] T. H. Liu, S. C. Lee, C. W. Pao, and C. C. Chang. Anomalous thermal transport along the grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations. Carbon, 73:432–442, 2014.
連結:
-
[54] J. M. Carlsson, L. M. Ghiringhelli, and A. Fasolino. Theory and hierarchical calculations of the structure and energetics of [0001] tilt grain boundaries in graphene. Physical Review B, 84(16):165423, 2011.
連結:
-
[55] L. A. Rowe and R. Jain. Acm sigmm retreat report on future directions in multimedia research. ACM Transactions on Multimedia Computing, Communications, and Applications, 1(1):3–13, 2005.
連結:
-
[56] C. Ophus, A. Shekhawat, H. Rasool, and A. Zettl. Large-scale experimental and theoretical study of graphene grain boundary structures. Physical Review B, 92(20):205402, 2015.
連結:
-
[57] K. Huang. Statistical mechanics. New York: John Wiley & Sons, 2 edition, 1987.
連結:
-
[58] J. M. Haile. Molecular dynamics simulation. New York: John Wiley & Sons, 1992.
連結:
-
[59] M. T. Dove. Introduction to lattice dynamics. Cambridge university press, 1993.
連結:
-
[60] G. Chen. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, 2005.
連結:
-
[61] M. Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford University Press, 2010.
連結:
-
[62] W. Nolting. Grundkurs theoretische physik 6: Statistische physik. Springer, 2014.
連結:
-
[63] T. H. Liu. An investigation of mechanical and thermal properties of graphene grain boundaries by atomistic simulations. PhD dissertation, National Taiwan University, 2012.
連結:
-
[1] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, et al. Atomic layers of hybridized boron nitride and graphene domains. Nature materials, 9(5):430–435, 2010.
-
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
-
[8] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang. Black phosphorus field-effect transistors. Nature nanotechnology, 9(5):372–377, 2014.
-
[51] Y. Y. Zhang, Y. Cheng, Q. X. Pei, C. M. Wang, and Y. Xiang. Thermal conductivity of defective graphene. Physics Letters A, 376(47):3668–3672, 2012.
-
[64] S. C. Lee. An investigation of mechanical and thermal properties of hexagonal-boron nitride by atomistic simulations. Master thesis, National Taiwan University, 2013.
-
[65] Y. T. Tsai. An investigation of mechanical and thermal properties of two-dimensional boron carbon nitride by molecular dynamics. Master thesis, National Taiwan University, 2017.
|