题名

矽與鋁對界面析出強化鋼之碳化物析出行為與肥粒鐵相變動力學影響

并列篇名

Effect of Silicon and Aluminum Addition on Precipitation Behaviors of carbides and Phase Transformation Kinetics of Ferrite in Interphase Precipitation Strengthened Steels

DOI

10.6342/NTU201703108

作者

吳俊霖

关键词

界面析出物 ; 矽 ; 鋁 ; 鈦 ; 鉬 ; 穿透式電子顯微鏡 ; interphases precipitation ; silicon ; aluminum ; titanium ; molybdenum ; transmission electron microscope

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

楊哲人

内容语文

繁體中文

中文摘要

眾多的鋼鐵材料中都會添加一些合金元素來達到所要求的強度、韌性等機械性質。其中矽與鋁為常見的合金元素,皆為肥粒鐵相穩定元素。本實驗中仍有鈦與鉬在肥粒鐵相基地析出奈米碳化物以進行界面析出強化。因此,本研究目的在於探討添加矽與鋁在界面析出強化鋼材中所產生的交互作用。 除了改變合金元素外,藉由不同的熱處理,鋼材也可以有不同的特性。隨著兩相持溫溫度的降低,晶粒尺寸下降且硬度上升;隨著沃斯田鐵化溫度的提高,普遍晶粒尺寸皆上升但硬度仍然提高。藉由穿透式電子顯微鏡的觀察,在較高的沃斯田鐵化溫度,具有密集的界面析出碳化物。此界面析出碳化物的變化透過換算而得之貢獻強度也因變密集而上升,使鋼材更為堅固。 取代部分矽為鋁添加於鋼鐵材料中,也造成不同的效果。鋁對於肥粒鐵的生長具有明顯的加速作用,不僅透過金相可以觀察此特性之外,也反映在相變曲線上。有添加鋁的鋼鐵材料會使相變曲線往左移動,使整體相變態反應提早。而矽的添加對於肥粒鐵相的固溶強化有顯著的影響,且可以使肥粒鐵相區擴大,但在高溫時傾向析出大尺寸的碳化物,影響界面析出強化機制之削弱。

英文摘要

In steel, it will be added some alloy elements to improve its strength, toughness. mechanical properties. Silicon and Aluminum are the common alloy elements in it. They both are ferrite stabilizer elements. In this study, there are titanium and molybdenum which precipitate nanometer carbides to interphase-precipitated strengthen in materials. Consequently, the goal of this study is to discuss the interaction of interphase precipitation strengthened steels with the addition of silicon and aluminum. Through the different heat treatment, we also can observe different characteristics of steel. By dual-phase holding temperature lowing, the grain size becomes small and harder; by increasing austenitization temperature, grain size generally increases but the values of hardness also increases. Through transmission electron microscope, there are intense interphase-precipitated carbides in steel at the higher austenitization temperature, and it contributes more strength to steel, becomes stronger. Replacing some silicon by aluminum can give rise to different effect. The aluminum can accelerate the growth of the ferrite. It is not only can be observed by optical microscope but also in TTT curve. The TTT curve will move to the left when adding aluminum to steel. The aluminum can make the whole phase transformation earlier. On the other hand, the silicon has an outstanding influence of solid solution strengthening and makes the phase region of ferrite bigger. However, it tends to precipitate big size carbides at high temperature and to weaken the mechanism of interphase precipitation strengthening.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. 1. Leslie, W.C., The physical metallurgy of steels. 1981.
    連結:
  2. 2. Honeycombe, R.W.K. and R.F. Mehl, Transformation from austenite in alloy steels. Metallurgical Transactions A, 1976. 7(7): p. 915-936.
    連結:
  3. Metallurgy and Materials Science, 2001(32(1)): p. 39.
    連結:
  4. 6. Zajac, S., Precipitation of microalloy carbo-nitrides prior, during and after
    連結:
  5. gamma/alpha transformation. 2005.
    連結:
  6. 9. Bhadeshia, H.K.D.H.a.R.W.K.H., Steels. microstructure and properties. 2006.
    連結:
  7. 10. Babu, S.S. and H.K.D.H. Bhadeshia, A direct study of grain boundary allotriomorphic ferrite crystallography. Materials Science and Engineering: A, 1991. 142(2): p. 209-219.
    連結:
  8. 11. Hung-Wei Yen, C.-Y.H.a.J.-R.Y., Scripta Materialia, 2009(61).
    連結:
  9. 13. Greninger, A.B.a.A.R.T., Transactions of the American Institute of Mining and Metallurgical Engineers, 1949. 185(9): p. 590.
    連結:
  10. 15. Gladman, T., The Physical Metallurgy of Microalloyed Steels. The Institute of Materials., 1997.
    連結:
  11. 20. Petch, N.J., Journal of the Iron and Steel Institute, 1953. 174(1): p. 25.
    連結:
  12. 21. F.M. Al-Abbasi, J.A., International Journal of Mechanical Sciences, 2003. 45.
    連結:
  13. 25. Honeycombe, R.W.K., 29th HATFIELD MEMORIAL LECTURE: Ferrite. Metal Science, 1980. 14(6): p. 201-214.
    連結:
  14. 27. Ricks, R.A. and P.R. Howell, The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys. Acta Metallurgica, 1983. 31(6): p. 853-861.
    連結:
  15. 30. Aaronson, M.E.a.H.I., Metall. Trans., 1986(17): p. 1385.
    連結:
  16. 32. M. H. Cai, H.D., J. S. Zhang and L. Li, Acta Metall. Sin. (Engl. Lett.), 2009(22): p. 100.
    連結:
  17. 34. Dong, J.X., et al., Effect of silicon on the kinetics of Nb(C, N) precipitation during the hot working of Nb-bearing steels. Isij International, 2000. 40(6): p. 613-618.
    連結:
  18. 36. Heller, T. and A. Nuss, Effect of alloying elements on microstructure and mechanical properties of hot rolled multiphase steels. Ironmaking & Steelmaking, 2005. 32(4): p. 303-308.
    連結:
  19. 37. Evans, P., The influence of rolling and forging on product quality and properties. Session 3, Paper 1. SMEA Conf. on, 2008.
    連結:
  20. 38. Girault, E., et al., Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels. Scripta materialia, 2001. 44(6): p. 885-892.
    連結:
  21. 39. Tsai, S.-P., et al., Effect of Cr and Al additions on the development of interphase-precipitated carbides strengthened dual-phase Ti-bearing steels. Materials & Design, 2017. 119: p. 319-325.
    連結:
  22. 40. Mein, A., et al., The influence of aluminium on the ferrite formation and microstructural development in hot rolled dual-phase steel. Materials Characterization, 2012. 64: p. 69-78.
    連結:
  23. 42. Mohrbacher, H., Principal effects of Mo in HSLA steels and cross effects with microalloying elements. Central Iron and Steel Research Institute (CISRI), 2010: p. 75-96.
    連結:
  24. 44. Kocks, U.F., On the spacing of dispersed obstacles. Acta Metallurgica, 1966. 14(11): p. 1629-1631.
    連結:
  25. 3. Davenport, A.T.a.R.W.K.H., Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1971(322(1549)): p. 191.
  26. 4. Lagneborg, R., et al., Scandinavian Journal of Metallurgy. 1999(28(5)): p. 186.
  27. 5. Lagneborg, R.a.S.Z., Metallurgical and Materials Transactions a-Physical
  28. 7. Shimizu, T., Y. Funakaw, and S. Kaneko, JFE TECHNICAL REPORT. 2004. p. 25.
  29. 8. Funakawa, Y., et al., Isij International, 2004(44(11)): p. 1945.
  30. 12. Bain, E.C. and N. Dunkirk, The nature of martensite. trans. AIME, 1924. 70(1): p. 25-47.
  31. 14. H. W. Yen, P.Y.C., C. Y. Huang, J. R. Yang, Acta Materialia, 2011. 59.
  32. 16. D.K. Felbeck, A.G.A., Strength and fracture of engineering solids. Prentice-Hall, Eaglewood Cliffs, NJ,, 1984.
  33. 17. Pickering, F.B., Physical metallurgical and the design of steel (Applied science,London, 1978.
  34. 18. Bergstrom, Y.a.H.H., Metal Science, 1983. 17(7): p. 341.
  35. 19. Hall, E.O., Proceedings of the Physical Society of London Section B, 1951. 64(381): p. 747.
  36. 22. C.Y. Huang, H.W.Y., Y. T. Pan, J.R. Yang, CIMME, 2009. 53(4).
  37. 23. Gladman, T., Materials Science and Technology, 1999. 15: p. 30.
  38. 24. Hull, D. and D.J. Bacon, 7 - Jogs and the Intersection of Dislocations, in Introduction to Dislocations (Fourth Edition). 2001, Butterworth-Heinemann: Oxford. p. 128-144.
  39. 26. Li, P.a.J.T., Metallurgical and Materials Transactions A, 1988. 19(9): p. 2139.
  40. 28. Ricks, R.A.a.P.R.H., Metal Science, 1982. 16(6): p. 317.
  41. 29. Bhadeshia, H.K.D.H., Bainite in steels. transformations, microstructure and
  42. properties /. 2001.
  43. 31. Lee, S.H.L.a.K.J., Adv. Mater. Res., 2007(26-28): p. 1307.
  44. 33. C. Ouchi, T.S.a.I.K., Trans., Isij International, 1982: p. 214.
  45. 35. Han, K., G.D.W. Smith, and D.V. Edmonds, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1995. 26(7): p. 1617.
  46. 41. Totten, G.E., Steel heat treatment : metallurgy and technologies. 2 ed.CRCNetBASE. 2007, Boca Raton, FL : Taylor & Francis.
  47. 43. A.D. Batte, R.W.K.H., Metal Sci J, 1973: p. 160.