题名

醫師使用電子病歷交換的影響因素及效益評估─以健保雲端藥歷系統為例

并列篇名

Influential factors and benefits of physicians using health information exchange – using National Health Insurance PharmaCloud System as an example

DOI

10.6342/NTU201803078

作者

莊秋華

关键词

雲端藥歷 ; 電子病歷交換 ; 電子病歷 ; 科技持續理論 ; 科技接受模式 ; 雲端資訊系統 ; 醫療資訊系統 ; PharmaCloud ; Health Information Exchange (HIE) ; Electronic Medical Records ; Technology Continuance Theory (TCT) ; Technology Acceptance Model (TAM) ; MediCloud System, Health Information Systems (HIS)

期刊名称

國立臺灣大學健康政策與管理研究所學位論文

卷期/出版年月

2018年

学位类别

博士

导师

楊銘欽

内容语文

繁體中文

中文摘要

目的:本研究欲分析影響醫師使用電子病歷交換的因素及效益評估,以健保雲端藥歷系統為例,採用科技持續理論 (Technology Continuance Theory, TCT),瞭解醫師使用健保雲端藥歷系統的影響因素及其效益,即是否能降低病人的藥品項數、藥費及增加被發現重複用藥機率、用藥交互作用機率之情形,以作為健保署及醫療機構推動持續使用的參考。方法:依據研究目的,將研究分為兩部分,第一部分以科技持續理論為基礎,設計結構式問卷,調查台灣某醫療體系的醫師,該體系包括一家醫學中心、兩家區域醫院及三家地區醫院等,針對門診主治醫師在使用健保雲端藥歷系統,採用預載比對雲端藥歷和手動查詢雲端藥歷兩種方式,在「與期待相符」、「知覺有用性」、「知覺易用性」、「態度」、「滿意度」、「持續使用意向」等變項,使用結構方程模式(SEM)分析以驗證各變項間的因果關係。第二部分探討醫師使用健保雲端藥歷系統的效益評估,採用差異中之差異模型(DID)來分析,有簽署同意預載比對雲端藥歷病人是否能讓就診門診成年病人的每年每次藥品項數、每人每次的藥費有效降低及增加被發現重複用藥、用藥交互作用機率。結果:本研究共發出775份問卷,回收有效問卷528份(回收率68%)。根據醫師基本特質對變項的影響,本研究發現醫師基本特質對於預載比對雲端藥歷系統的看法,不同醫院層級填答者對預載比對雲端藥歷的「知覺易用性」的看法有顯著差異與不同性別填答者對預載比對雲端藥歷的「態度」的看法有顯著差異。另,醫師年齡越低、服務年資越短,其對手動查詢雲端藥歷的「與期望相符」、「知覺有用性」、「知覺易用性」、「態度」、「滿意度」、「持續使用意向」的得分越高,且不同醫院層級對手動查詢雲端藥歷的「與期望相符」、「知覺有用性」「知覺易用性」、「態度」、「滿意度」、「持續使用意向」的看法會有顯著差異;而每次平均門診人數較少的醫師,其對手動查詢雲端藥歷的「知覺有用性」、「知覺易用性」、「態度」的看法和平均門診人數較多的醫師不同,且「滿意度」和「持續使用意向」得分越高。路徑分析之結果顯示,會影響醫師對預載比對雲端藥歷的「持續使用意向」的因素包括「認知有用性」(p<0.0001)、「滿意度」(p<0.001)、「態度」(p<0.001);但影響醫師手動查詢雲端藥歷「持續使用意向」的因素只有「滿意度」(p<0.001)和「態度」(p<0.001)。「與期望相符」與「知覺易用性」在預載比對雲端藥歷和手動查詢雲端藥歷上,都會正向影響「知覺有用性」(p<0.001, p<0.001);「知覺有用性」和「知覺易用性」兩變項在預載比對和手動查詢雲端藥歷上,也都會正向影響「態度」(p<0.001, p<0.001);但「知覺有用性」對「滿意度」的影響只有在預載比對雲端藥歷上顯著。健保雲端藥歷查詢效益評估分析上,在控制性別、年齡、三高及思覺失調等疾病病人特質後,病人有簽署同意預載比對雲端藥歷同意書之後測發現平均每人每次藥品項次減少7.0%(p<0.001)、平均每人藥費則未顯著增加。另外,被發現有重複用藥的機率顯著較高,是未簽署者的1.83倍(p<0.0001);被發現有用藥交互作用的機率和未簽署者之差異則未達統計顯著。結論:當醫師對健保雲端藥歷系統的「期望」與實際使用的相符性越接近,則其對健保雲端藥歷系統的「知覺有用性」越高,自然而然地對該系統的「滿意度」和「態度」就越良好,且對「持續使用」健保雲端藥歷系統所造成的正向影響則會越強,持續使用健保雲端藥歷系統的時間則會越久。病人有簽署同意預載比對雲端藥歷之後,顯著的影響病人門診的藥品項數降低,但門診藥費卻沒有減少。另外,被發現有重複用藥的機率顯著較高,但被發現有用藥交互作用之機率則没有差異。

英文摘要

Objectives: This research aims to use Technology Continuance Theory (TCT) to investigate the factors influence physicians using pharmaCloud system and to evaluate its benefits, which includes whether the number and cost of prescribed medications are redueced and the probability of discovering repetitive medication and medication interaction are increased. Method: According to the research objective, the research consists of two parts: the first part is to construct a structured questionnaire that was based on the TCT, which was used in order to investigate physicians in a medical system, which consists of a medical center, two regional hospitals, and three district hospitals in Taiwan. The research focuses on investigating the “confirmation”, “perceived usefulness“, “perceived ease of use“, “attitude“, “satisfaction“ and “continuance usage intention“ towards preload-based comparison and manual search in pharmaCloud for attending physicians during their outpatient clinics. The research uses path analysis to analyze the cause and effect relationship between variables. The second part of the research evaluated the benefits of physicians using the Healthcare pharmaCloud system. The research uses Difference in Differences (DID) to analyze whether patients who signed the consent form to use preload-based comparison pharmaCloud experienced reduced numbers and cost of prescribed medication and an increase of the probability of discovering repetitive medication and medication interaction than those who did not sign the consent form. Results: The research sent out 775 copies of questionnaires, and collected 528 copies, with a response rate of 68%. In terms of the effects of physicians’ characteristic on using preload-based pharmaCloud, the research found that physicians from different levels of hospitals have significantly different opinions toward the “perceived ease of use” in preload-based comparison in pharmaCloud. Gender of the physicians also significantly affected their attitude towards preload-based comparison in pharmaCloud. In terms of manual search in pharmaCloud, the research found that in regards to “perceived ease of use”, “attitude”, “satisfaction” and “continuance usage intention”, physicians who are younger and have fewer years of service, scored higher in “confirmation”, “perceived usefulness”, “perceived ease of use”, “attitude”, “satisfaction” and “continuance usage intention” towards manual search in pharmaCloud. In addition, levels of hospitals also significantly affect physicians’ opinions toward “confirmation”, “perceived usefulness”, “perceived ease of use”, “attitude”, “satisfaction” and “continuance usage intention” towards manual search in pharmaCloud. Physicians who had less average number of outpatients seen per clinic session scored higher in “satisfaction” and “continuance usage intention” and their opinions in “perceived usefulness”, “perceived ease of use” and “attitude” towards manual search in pharmaCloud is significantly different from that of physicians who had more average number of outpatients seen per clinic session. The results of path analysis show that factors affect physicians continue to use preload-based comparison in pharmaCloud included “perceived usefulness” (p<0.001), “satisfaction” (p<0.001), and “attitude” (p<0.001). However, factors that influence physicians’ continue to use manual search in pharmaCloud are only “satisfaction” (p<0.001) and “attitude” (p<0.001). “Confirmation“ and “perceived ease of use“ both affect physicians’ “perceived usefulness“ towards preload-based comparison in pharmaCloud (p<0.001, p<0.001, respectively), and both “perceived usefulness” and “perceived ease of use” positively affect “attitude” (p<0.001, p<0.001, respectively) on both preload-based comparison and manual search in pharmaCloud. However, the effects of “perceived usefulness” and “perceived ease of use” on “satisfaction” can only be seen in preload-based comparison in pharmaCloud. In terms of the benefits of the healthcare pharmaCloud system, the research has controlled patients’ gender, age, triple H (hypertension, hyperglycemia, and hyperlipidemia) and Schizophrenia and found that by signing consent for preload-based comparison in pharmaCloud, the number of prescribed medications has decreased by 7% (p<0.001) per visit per person, but the costs of prescribed medication per visit per person did not increase significantly. The probability of discovering repetitive medication was 1.83 times higher than that of outpatients who did not sign the consent form while the probability of discovering medication interaction was not significantly different. Conclusion: When physicians’ actual use of pharmaCloud has met their expectation, they will have higher levels of confirmation, better perceived usefulness, and it will naturally increase their satisfaction and attitude towards pharmaCloud and positively affect them to continue to use pharmaCloud. After outpatients have signed the consent form for preload-based comparison on pharmaCloud, the number of prescribed medications decreased significantly while the change of cost of prescribed medication was not significant. In addition, the probability of discovering repetitive medication increased significantly while the probability of discovering medication interaction did not change significantly.

主题分类 醫藥衛生 > 預防保健與衛生學
公共衛生學院 > 健康政策與管理研究所
社會科學 > 社會科學綜合
参考文献
  1. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008
    連結:
  2. 陳福基, 蕭世榮, 陳啟元, & 杜素珍. (2005). 影響醫院接受行動護理站因素之研究-以南部某區域教學醫院為例. 資訊管理學報, 12(S), 67-89.
    連結:
  3. Abdekhoda, M., Ahmadi, M., Gohari, M., & Noruzi, A. (2015). The effects of organizational contextual factors on physicians' attitude toward adoption of Electronic Medical Records. J Biomed Inform, 53, 174-179. doi:10.1016/j.jbi.2014.10.008
  4. Abramson, E. L., McGinnis, S., Edwards, A., Maniccia, D. M., Moore, J., Kaushal, R., & Investigators, H. (2012). Electronic health record adoption and health information exchange among hospitals in New York State. J Eval Clin Pract, 18(6), 1156-1162. doi:10.1111/j.1365-2753.2011.01755.x
  5. Adler-Milstein, J., Bates, D. W., & Jha, A. K. (2011). A survey of health information exchange organizations in the United States: implications for meaningful use. Ann Intern Med, 154(10), 666-671. doi:10.7326/0003-4819-154-10-201105170-00006
  6. Adler-Milstein, J., Bates, D. W., & Jha, A. K. (2013). Operational Health Information Exchanges Show Substantial Growth, But Long-Term Funding Remains A Concern. Health Affairs, 32(8), 1486-1492. doi:10.1377/hlthaff.2013.0124
  7. Adler-Milstein, J., Holmgren, A. J., Kralovec, P., Worzala, C., Searcy, T., & Patel, V. (2017). Electronic health record adoption in US hospitals: the emergence of a digital “advanced use” divide. Journal of the American Medical Informatics Association, 24(6), 1142-1148.
  8. Adler-Milstein, J., & Jha, A. K. (2017). HITECH Act drove large gains in hospital electronic health record adoption. Health Affairs, 36(8), 1416-1422.
  9. Adler-Milstein, J., Landefeld, J., & Jha, A. K. (2010). Characteristics associated with Regional Health Information Organization viability. Journal of the American Medical Informatics Association, 17(1), 61-65. doi:10.1197/jamia.M3284
  10. Adler-Milstein, J., Landefeld, J., & Jha, A. K. (2010). Characteristics associated with regional health information organization viability. J Am Med Inform Assoc, 17(1), 61-65. doi:10.1197/jamia.M3284
  11. Agarwal, R., Mishra, A., Angst, C., & Anderson, C. (2007). Digitizing healthcase: The ability and motivation of physician practices and their adoption of electronic health record systems. ICIS 2007 Proceedings, 115.
  12. Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. Int J Med Inform, 78(2), 115-126. doi:10.1016/j.ijmedinf.2008.06.006
  13. Aldosari, B. (2003). Factors Affecting Physicians' Attitudes about the Medical Information System Usage and Acceptance Through the Mandated Implementation of Integrated Medical Information System at the Saudi Arabia National Guard Health System: A Modified Technology Acceptance Model: University of Pittsburgh.
  14. Ancker, J. S., Miller, M. C., Pate, V., Kaushal, R., & Investigators, H. (2014). Sociotechnical challenges to developing technologies for patient access to health information exchange data. Journal of the American Medical Informatics Association, 21(4), 664-670. doi:10.1136/amiajnl-2013-002073
  15. Ancker, J. S., Silver, M., Miller, M. C., & Kaushal, R. (2013). Consumer experience with and attitudes toward health information technology: a nationwide survey. Journal of the American Medical Informatics Association : JAMIA, 20(1), 152-156. doi:10.1136/amiajnl-2012-001062
  16. Anderson, J. G. (1997). Clearing the way for physicians' use of clinical information systems. Commun. ACM, 40(8), 83-90. doi:10.1145/257874.257895
  17. Anderson, J. G., Jay, S. J., Anderson, M., & Hunt, T. J. (2002). Evaluating the Capability of Information Technology to Prevent Adverse Drug Events: A Computer Simulation Approach. Journal of the American Medical Informatics Association : JAMIA, 9(5), 479-490. doi:10.1197/jamia.M1099
  18. Angst, C. M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy concerns: The elaboration likelihood model and individual persuasion. MIS quarterly, 33(2), 339-370.
  19. Archer, N., & Cocosila, M. (2011). A Comparison of Physician Pre-Adoption and Adoption Views on Electronic Health Records in Canadian Medical Practices. Journal of Medical Internet Research, 13(3), e57. doi:10.2196/jmir.1726
  20. Ashenfelter, O. (1978). Estimating the effect of training programs on earnings. The Review of Economics and Statistics, 47-57.
  21. Ashenfelter, O. C., & Card, D. (1984). Using the longitudinal structure of earnings to estimate the effect of training programs: National Bureau of Economic Research Cambridge, Mass., USA.
  22. Ayanso, A., Herath, T. C., & O'Brien, N. (2015). Understanding continuance intentions of physicians with electronic medical records (EMR): An expectancy-confirmation perspective. Decision Support Systems, 77, 112-122.
  23. Bailey, J. E., Pope, R. A., Elliott, E. C., Wan, J. Y., Waters, T. M., & Frisse, M. E. (2013). Health Information Exchange Reduces Repeated Diagnostic Imaging for Back Pain. Annals of Emergency Medicine, 62(1), 16-24. doi:10.1016/j.annemergmed.2013.01.006
  24. Bailey, J. E., Wan, J. Y., Mabry, L. M., Landy, S. H., Pope, R. A., Waters, T. M., & Frisse, M. E. (2013). Does health information exchange reduce unnecessary neuroimaging and improve quality of headache care in the emergency department? J Gen Intern Med, 28(2), 176-183. doi:10.1007/s11606-012-2092-7
  25. Bate, D., Spell, N., Cullen, D., Burdick, E., Laird, N., Petersen, L., . . . Leape, L. (1997). The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. Journal of the American Medical Association, 277, 307-311.
  26. Bates, D. W., Cohen, M., Leape, L. L., Overhage, J. M., Shabot, M. M., & Sheridan, T. (2001). Reducing the Frequency of Errors in Medicine Using Information Technology (Vol. 8).
  27. Bates, D. W., Spell, N., Cullen, D. J., & et al. (1997). THe costs of adverse drug events in hospitalized patients. JAMA, 277(4), 307-311. doi:10.1001/jama.1997.03540280045032
  28. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
  29. Bhattacherjee, A., & Hikmet, N. (2007). Physicians' resistance toward healthcare information technology: a theoretical model and empirical test. European Journal of Information Systems, 16(6), 725-737. doi:10.1057/palgrave.ejis.3000717
  30. Birkhead, G. S., Klompas, M., & Shah, N. R. (2015). Uses of electronic health records for public health surveillance to advance public health. Annual review of public health, 36, 345-359.
  31. Birkmeyer, C. M., Lee, J., Bates, D. W., & Birkmeyer, J. D. (2002). Will electronic order entry reduce health care costs? Eff Clin Pract, 5(2), 67-74.
  32. Campion, T. R., Jr., Edwards, A. M., Johnson, S. B., & Kaushal, R. (2013). Health information exchange system usage patterns in three communities: practice sites, users, patients, and data. Int J Med Inform, 82(9), 810-820. doi:10.1016/j.ijmedinf.2013.05.001
  33. Card, D., & Sullivan, D. M. (1987). Measuring the Effect of Subsidized Training Programs on Movements In andOut of Employment: National Bureau of Economic Research Cambridge, Mass., USA.
  34. Chang, I. C., Hwang, H.-G., Hung, M.-C., Lin, M.-H., & Yen, D. C. (2007). Factors affecting the adoption of electronic signature: Executives' perspective of hospital information department. Decision Support Systems, 44(1), 350-359. doi:10.1016/j.dss.2007.04.006
  35. Chau, P. Y. K., & Hu, P. J.-H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Information & Management, 39(4), 297-311. doi:http://dx.doi.org/10.1016/S0378-7206(01)00098-2
  36. Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., . . . Shekelle, P. G. (2006). Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med, 144(10), 742-752. Retrieved from http://annals.org/data/Journals/AIM/20115/0000605-200605160-00125.pdf
  37. Chismar, W. G., & Wiley-Patton, S. (2003). Does the extended technology acceptance model apply to physicians. Paper presented at the System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on.
  38. Classen, D. C., Pestotnik, S. L., Evans, R., Lloyd, J. F., & Burke, J. P. (1997). Adverse drug events in hospitalized patients: Excess length of stay, extra costs, and attributable mortality. JAMA, 277(4), 301-306. doi:10.1001/jama.1997.03540280039031
  39. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. doi:doi:10.1287/mnsc.35.8.982
  40. DesRoches, C. M., Campbell, E. G., Rao, S. R., Donelan, K., Ferris, T. G., Jha, A., . . . Shields, A. E. (2008). Electronic health records in ambulatory care—a national survey of physicians. New England Journal of Medicine, 359(1), 50-60.
  41. Dhopeshwarkar, R. V., Kern, L. M., O’Donnell, H. C., Edwards, A. M., & Kaushal, R. (2012). Health care consumers’ preferences around health information exchange. The Annals of Family Medicine, 10(5), 428-434.
  42. Doolan, D. F., Bates, D. W., & James, B. C. (2003). The Use of Computers for Clinical Care: A Case Series of Advanced U.S. Sites. Journal of the American Medical Informatics Association, 10(1), 94-107. doi:10.1197/jamia.M1127
  43. Evans, R. S., Classen, D. C., Stevens, L. E., Pestotnik, S. L., Gardner, R. M., Lloyd, J. F., & Burke, J. P. (1993). Using a hospital information system to assess the effects of adverse drug events. Proceedings of the Annual Symposium on Computer Application in Medical Care, 161-165. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248496/
  44. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
  45. Fontaine, P., Ross, S. E., Zink, T., & Schilling, L. M. (2010). Systematic review of health information exchange in primary care practices. J Am Board Fam Med, 23(5), 655-670. doi:10.3122/jabfm.2010.05.090192
  46. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
  47. Fraser, H. S., & Blaya, J. (2010). Implementing medical information systems in developing countries, what works and what doesn’t. Paper presented at the AMIA Annual Symposium Proceedings.
  48. Frisse, M. E., Johnson, K. B., Nian, H., Davison, C. L., Gadd, C. S., Unertl, K. M., . . . Chen, Q. (2012). The financial impact of health information exchange on emergency department care. J Am Med Inform Assoc, 19(3), 328-333. doi:10.1136/amiajnl-2011-000394
  49. Frolick, M. (2009). Using electronic medical records to improve patient care: The st. jude children’s research hospital case. Information Science Today.
  50. Gadd, C. S., Ho, Y. X., Cala, C. M., Blakemore, D., Chen, Q., Frisse, M. E., & Johnson, K. B. (2011). User perspectives on the usability of a regional health information exchange. J Am Med Inform Assoc, 18(5), 711-716. doi:10.1136/amiajnl-2011-000281
  51. Gagnon, M.-P., Ghandour, E. K., Talla, P. K., Simonyan, D., Godin, G., Labrecque, M., . . . Rousseau, M. (2014). Electronic health record acceptance by physicians: testing an integrated theoretical model. J Biomed Inform, 48, 17-27.
  52. Hardin, J. W., & Hilbe, J. M. (2002). Generalized estimating equations: Chapman and Hall/CRC.
  53. Haskins, M. (2002). Legible charts! Experiences in converting to electronic medical records. Canadian Family Physician, 48, 768.
  54. Henry, J., Pylypchuk, Y., Searcy, T., & Patel, V. (2016). Adoption of electronic health record systems among US non-federal acute care hospitals: 2008-2015. ONC Data Brief, 35, 1-9.
  55. Heselmans, A., Aertgeerts, B., Donceel, P., Geens, S., Van de Velde, S., & Ramaekers, D. (2012). Family physicians’ perceptions and use of electronic clinical decision support during the first year of implementation. J Med Syst, 36(6), 3677-3684.
  56. Hewitt, B. (2009). Using a hybrid technology acceptance model to explore how security measures affect the adoption of electronic health record systems. AMCIS 2009 Proceedings, 328.
  57. Hincapie, A. L., Warholak, T. L., Murcko, A. C., Slack, M., & Malone, D. C. (2011). Physicians' opinions of a health information exchange. J Am Med Inform Assoc, 18(1), 60-65. doi:10.1136/jamia.2010.006502
  58. Holden, R. J., & Karsh, B. T. (2010). The technology acceptance model: its past and its future in health care. J Biomed Inform, 43(1), 159-172. doi:10.1016/j.jbi.2009.07.002
  59. Hsiao, C. J., Jha, A. K., King, J., Patel, V., Furukawa, M. F., & Mostashari, F. (2013). Office-based physicians are responding to incentives and assistance by adopting and using electronic health records. Health Aff (Millwood), 32(8), 1470-1477. doi:10.1377/hlthaff.2013.0323
  60. Hsieh, P.-J. (2015). Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. Int J Med Inform, 84(1), 1-14.
  61. Hsieh, P.-J., Lai, H.-M., & Hong, Y.-L. (2015). Explaining Physicians' Acceptance and Resistance to the NHI Pharmacloud: A Theoretical Model and Empirical Test. Paper presented at the PACIS.
  62. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of management information systems, 16(2), 91-112.
  63. Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. J. Manage. Inf. Syst., 16(2), 91-112.
  64. Huang, S.-K., Wang, P.-J., Tseng, W.-F., Syu, F.-K., Lee, M.-C., Shih, R.-L., . . . Chen, M. S. (2015). NHI-PharmaCloud in Taiwan—A preliminary evaluation using the RE-AIM framework and lessons learned. Int J Med Inform, 84(10), 817-825.
  65. Hunt, V. V., Massey, W. W., Weinberg, R., Bruyere, R., & Hahn, P. (1977). A study of structural integration from neuromuscular, energy field, and emotional approaches. Boulder: Rolf Institute of Structural Integration.
  66. Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of management information systems, 13(1), 127-143.
  67. Ilie, V., Van Slyke, C., Parikh, M. A., & Courtney, J. F. (2009). Paper Versus Electronic Medical Records: The Effects of Access on Physicians' Decisions to Use Complex Information Technologies*. Decision Sciences, 40(2), 213-241. doi:10.1111/j.1540-5915.2009.00227.x
  68. Ismail, N. I., Abdullah, N. H., Shamsudin, A., & Ariffin, N. A. N. (2013). Implementation differences of Hospital Information System (HIS) in Malaysian public hospitals. International Journal of Social Science and Humanity, 3(2), 115.
  69. Ismail, N. I. B., & Abdullah, N. H. B. (2011). Developing electronic medical records (EMR) framework for Malaysia's public hospitals. Paper presented at the Humanities, Science and Engineering (CHUSER), 2011 IEEE Colloquium on.
  70. Jasperson, J. S., Carter, P. E., & Zmud, R. W. (2005). A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS quarterly, 29(3), 525-557.
  71. Jha, A. K., DesRoches, C. M., Kralovec, P. D., & Joshi, M. S. (2010). A progress report on electronic health records in U.S. hospitals. Health Aff (Millwood), 29(10), 1951-1957. doi:10.1377/hlthaff.2010.0502
  72. Jones, S. S., Friedberg, M. W., & Schneider, E. C. (2011). Health Information Exchange, Health Information Technology Use, and Hospital Readmission Rates. AMIA Annual Symposium Proceedings, 2011, 644-653. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243133/
  73. Kaiser, M. (1974). Kaiser-Meyer-Olkin measure for identity correlation matrix. Journal of the Royal Statistical Society, 52.
  74. Kern, L. M., Barron, Y., Abramson, E. L., Patel, V., & Kaushal, R. (2009). HEAL NY: Promoting Interoperable Health Information Technology In New York State. Health Affairs, 28(2), 493-504. doi:10.1377/hlthaff.28.2.493
  75. Kierkegaard, P., Kaushal, R., & Vest, J. R. (2014). How could health information exchange better meet the needs of care practitioners? Appl Clin Inform, 5(4), 861-877. doi:10.4338/aci-2014-06-ra-0055
  76. Lammers, E. J., Adler-Milstein, J., & Kocher, K. E. (2014). Does health information exchange reduce redundant imaging? Evidence from emergency departments. Med Care, 52(3), 227-234. doi:10.1097/mlr.0000000000000067
  77. Lammers, E. J., Adler-Milstein, J., & Kocher, K. E. (2014). Does Health Information Exchange Reduce Redundant Imaging? Evidence From Emergency Departments. Med Care, 52(3), 227-234. doi:10.1097/mlr.0000000000000067
  78. Lechner, M. (2011). The estimation of causal effects by difference-in-difference methods. Foundations and Trends® in Econometrics, 4(3), 165-224.
  79. Lee, M.-C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
  80. Li, Y.-C. J., Yen, J.-C., Chiu, W.-T., Jian, W.-S., Syed-Abdul, S., & Hsu, M.-H. (2015). Building a National Electronic Medical Record Exchange System–Experiences in Taiwan. Computer methods and programs in biomedicine, 121(1), 14-20.
  81. Liao, C., Palvia, P., & Chen, J.-L. (2009). Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). International Journal of Information Management, 29(4), 309-320.
  82. Lo, J. (2009). PHP62 THE PRELIMINARY IMPACT OF HOSPITAL GLOBAL BUDGETING ON THE QUALITY OF CARE. Value in Health, 12(3), A89-A90.
  83. Lo, J. C., Hong, Y.-C., & Lin, C.-C. (2013). Healthcare utilization of bereaved family members following the 1999 Chi-chi earthquake: Evidence from administrative data. Journal of psychosomatic research, 75(5), 484-490.
  84. Marangunić, N., & Granić, A. (2014). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. doi:10.1007/s10209-014-0348-1
  85. McGinn, C. A., Grenier, S., Duplantie, J., Shaw, N., Sicotte, C., Mathieu, L., . . . Gagnon, M.-P. (2011). Comparison of user groups' perspectives of barriers and facilitators to implementing electronic health records: a systematic review. BMC medicine, 9(1), 46.
  86. Meade, B., Buckley, D., & Boland, M. (2009). What factors affect the use of electronic patient records by Irish GPs? Int J Med Inform, 78(8), 551-558. doi:10.1016/j.ijmedinf.2009.03.004
  87. Melas, C. D., Zampetakis, L. A., Dimopoulou, A., & Moustakis, V. (2011). Modeling the acceptance of clinical information systems among hospital medical staff: an extended TAM model. J Biomed Inform, 44(4), 553-564. doi:10.1016/j.jbi.2011.01.009
  88. Mettler, T. (2012). Post-acceptance of electronic medical records: Evidence from a longitudinal field study.
  89. Miller, A. R., & Tucker, C. (2014). Health information exchange, system size and information silos. Journal of Health Economics, 33, 28-42. doi:10.1016/j.jhealeco.2013.10.004
  90. Miller, R. H., & Sim, I. (2004). Physicians’ use of electronic medical records: barriers and solutions. Health Affairs, 23(2), 116-126.
  91. Mohd, H., & Syed Mohamad, S. M. (2005). Acceptance model of electronic medical record. Journal of Advancing Information and Management Studies, 2(1), 75-92.
  92. Moores, T. T. (2012). Towards an integrated model of IT acceptance in healthcare. Decision Support Systems, 53(3), 507-516. doi:10.1016/j.dss.2012.04.014
  93. Morton, M. E., & Wiedenbeck, S. (2009). A Framework for Predicting EHR Adoption Attitudes: A Physician Survey. Perspectives in Health Information Management / AHIMA, American Health Information Management Association, 6(Fall), 1a. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804456/
  94. Morton, M. E., & Wiedenbeck, S. (2010). EHR Acceptance Factors in Ambulatory Care: A Survey of Physician Perceptions. Perspectives in Health Information Management / AHIMA, American Health Information Management Association, 7(Winter), 1c. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805555/
  95. Nov, O., & Schecter, W. (2012). Dispositional resistance to change and hospital physicians' use of electronic medical records: A multidimensional perspective. Journal of the American Society for Information Science and Technology, 63(4), 648-656. doi:10.1002/asi.22602
  96. O'Donnell, H. C., Patel, V., Kern, L. M., Barron, Y., Teixeira, P., Dhopeshwarkar, R., & Kaushal, R. (2011). Healthcare Consumers' Attitudes Towards Physician and Personal Use of Health Information Exchange. J Gen Intern Med, 26(9), 1019-1026. doi:10.1007/s11606-011-1733-6
  97. Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
  98. Ortega Egea, J. M., & Román González, M. V. (2011). Explaining physicians’ acceptance of EHCR systems: An extension of TAM with trust and risk factors. Computers in Human Behavior, 27(1), 319-332. doi:10.1016/j.chb.2010.08.010
  99. Overhage, J. M., Dexter, P. R., Perkins, S. M., Cordell, W. H., McGoff, J., McGrath, R., & McDonald, C. J. (2002). A randomized, controlled trial of clinical information shared from another institution. Annals of Emergency Medicine, 39(1), 14-23. doi:10.1067/mem.2002.120794
  100. Pai, F.-Y., & Huang, K.-I. (2011). Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660. doi:10.1016/j.techfore.2010.11.007
  101. Paré, G., Raymond, L., de Guinea, A. O., Poba-Nzaou, P., Trudel, M.-C., Marsan, J., & Micheneau, T. (2015). Electronic health record usage behaviors in primary care medical practices: a survey of family physicians in Canada. Int J Med Inform, 84(10), 857-867.
  102. Patel, V., Abramson, E. L., Edwards, A., Malhotra, S., & Kaushal, R. (2011). Physicians' potential use and preferences related to health information exchange. Int J Med Inform, 80(3), 171-180. doi:10.1016/j.ijmedinf.2010.11.008
  103. Patel, V. N., Dhopeshwarkar, R. V., Edwards, A., Barron, Y., Sparenborg, J., & Kaushal, R. (2012). Consumer Support for Health Information Exchange and Personal Health Records: A Regional Health Information Organization Survey. J Med Syst, 36(3), 1043-1052. doi:10.1007/s10916-010-9566-0
  104. Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS quarterly, 115-143.
  105. Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Research in nursing & health, 30(4), 459-467.
  106. Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. Journal of business research, 59(9), 999-1007.
  107. Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39(1), 33-38.
  108. Ross, S. E., Radcliff, T. A., Leblanc, W. G., Dickinson, L. M., Libby, A. M., & Nease, D. E., Jr. (2013). Effects of health information exchange adoption on ambulatory testing rates. J Am Med Inform Assoc, 20(6), 1137-1142. doi:10.1136/amiajnl-2012-001608
  109. Rudin, R. S., Motala, A., Goldzweig, C. L., & Shekelle, P. G. (2014). Usage and effect of health information exchange: a systematic review. Ann Intern Med, 161(11), 803-811. doi:10.7326/m14-0877
  110. Sánchez, J. L., Savin, S., & Vasileva, V. (2005). Key success factors in implementing electronic medical records in University Hospital of Rennes. L’Ecole Nationale de la Santé Publique (National School of Public Health), Rennes, Rennes, France, 1-59.
  111. Salzberg, C. A., Jang, Y., Rozenblum, R., Zimlichman, E., Tamblyn, R., & Bates, D. W. Policy initiatives for Health Information Technology: A qualitative study of U.S. expectations and Canada's experience. International Journal of Medical Informatics, 81(10), 713-722. doi:10.1016/j.ijmedinf.2012.07.007
  112. Sayyah Gilani, M., Iranmanesh, M., Nikbin, D., & Zailani, S. (2017). EMR continuance usage intention of healthcare professionals. Informatics for Health and Social Care, 42(2), 153-165.
  113. Shekelle, P. G., Morton, S. C., & Keeler, E. B. (2006). Costs and benefits of health information technology. Evid Rep Technol Assess (Full Rep)(132), 1-71.
  114. Sonoda, T. (2011). Evolution of electronic medical record solutions. Fujitsu Sci. Tech. J, 47(1), 19-27.
  115. Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. The Journal of Marketing, 15-32.
  116. Sridhar, S., Brennan, P. F., Wright, S. J., & Robinson, S. M. (2012). Optimizing financial effects of HIE: a multi-party linear programming approach. J Am Med Inform Assoc, 19(6), 1082-1088. doi:10.1136/amiajnl-2011-000606
  117. Steinbrook, R. (2009). Health Care and the American Recovery and Reinvestment Act. New England Journal of Medicine, 360(11), 1057-1060. doi:doi:10.1056/NEJMp0900665
  118. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management science, 42(1), 85-92.
  119. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
  120. Thorn, S. A., Carter, M. A., & Bailey, J. E. (2014). Emergency physicians' perspectives on their use of health information exchange. Ann Emerg Med, 63(3), 329-337. doi:10.1016/j.annemergmed.2013.09.024
  121. Tseng, Y.-T., Chang, E. H., Kuo, L.-N., Shen, W.-C., Bai, K.-J., Wang, C.-C., & Chen, H.-Y. (2017). Preliminary physician and pharmacist survey of the National Health Insurance PharmaCloud system in Taiwan. Computer methods and programs in biomedicine, 149, 69-77.
  122. Tung, F.-C., Chang, S.-C., & Chou, C.-M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. Int J Med Inform, 77(5), 324-335.
  123. Venkatesh, V., & Davis, F. D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test*. Decision Sciences, 27(3), 451-481. doi:10.1111/j.1540-5915.1996.tb00860.x
  124. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. doi:10.1287/mnsc.46.2.186.11926
  125. Vest, J. R. (2008). Health Information Exchange and Healthcare Utilization. Journal of Medical Systems, 33(3), 223-231. doi:10.1007/s10916-008-9183-3
  126. Vest, J. R., Campion, T. R., Jr., & Kaushal, R. (2013). Challenges, alternatives, and paths to sustainability for health information exchange efforts. J Med Syst, 37(6), 9987. doi:10.1007/s10916-013-9987-7
  127. Vest, J. R., & Gamm, L. D. (2010). Health information exchange: persistent challenges and new strategies. Journal of the American Medical Informatics Association, 17(3), 288-294.
  128. Vest, J. R., Jasperson, J., Zhao, H., Gamm, L. D., & Ohsfeldt, R. L. (2011). Use of a health information exchange system in the emergency care of children. BMC Med Inform Decis Mak, 11. doi:10.1186/1472-6947-11-78
  129. Vest, J. R., & Jasperson, S. (2012). How are health professionals using health information exchange systems? Measuring usage for evaluation and system improvement. J Med Syst, 36(5), 3195-3204. doi:10.1007/s10916-011-9810-2
  130. Vest, J. R., Jasperson, S., Zhao, H., Gamm, L. D., & Ohsfeldt, R. L. (2011). Use of a health information exchange system in the emergency care of children. BMC Med Inform Decis Mak, 11, 78. doi:10.1186/1472-6947-11-78
  131. Vest, J. R., Kern, L. M., Campion, T. R., Silver, M. D., & Kaushal, R. (2014). Association Between Use of a Health Information Exchange System and Hospital Admissions. Applied Clinical Informatics, 5(1), 219-231. doi:10.4338/ACI-2013-10-RA-0083
  132. Vest, J. R., & Miller, T. R. (2011). The association between health information exchange and measures of patient satisfaction. Appl Clin Inform, 2(4), 447-459. doi:10.4338/aci-2011-06-ra-0040
  133. Walker, J., Pan, E., Johnston, D., & Adler-Milstein, J. (2005). The value of health care information exchange and interoperability. Health Affairs, 24, W5.
  134. Williams, C., Mostashari, F., Mertz, K., Hogin, E., & Atwal, P. (2012). From the Office of the National Coordinator: the strategy for advancing the exchange of health information. Health Aff (Millwood), 31(3), 527-536. doi:10.1377/hlthaff.2011.1314
  135. Williams, K. S., Shah, G. H., Leider, J., & Gupta, A. (2017). Overcoming Barriers to Experience Benefits: A Qualitative Analysis of Electronic Health Records and Health Information Exchange Implementation in Local Health Departments. eGEMs, 5(1).
  136. Wynia, M. K., Torres, G. W., & Lemieux, J. (2011). Many physicians are willing to use patients’ electronic personal health records, but doctors differ by location, gender, and practice. Health Affairs, 30(2), 266-273.
  137. Zailani, S., Gilani, M. S., Nikbin, D., & Iranmanesh, M. (2014). Determinants of telemedicine acceptance in selected public hospitals in Malaysia: clinical perspective. J Med Syst, 38(9), 111.
  138. 王慧瑜, 葉明功, 胡明寬, 陳建銘, & 湯松陵. (2016). 運用門診雲端藥歷進行藥事照護與藥物相關問題探討. 臺灣臨床藥學雜誌, 24(3), 194-208.
  139. 中央健保署(2014):http://www.nhi.gov.tw/information/NewsDetail.aspx?menu=9&menu_id=544&No=1193,2015年1月29日取得。
  140. 中央健保署(2014) http://www.nhi.gov.tw/Resource/Papers/263_2%E5%81%A5%E4%BF%9D%E9%9B%B2%E7%AB%AF%E8%97%A5%E6%AD%B7%E7%B3%BB%E7%B5%B1%E5%96%AE%E5%BC%B5-1030911.pdf,2015年1月29日取得。
  141. 中央健保署(2018):https://www.nhi.gov.tw/Content_List.aspx?n=4ECCECAD2500FA7B&topn=CA428784F9ED78C9,2018年5月20日取得
  142. 中央健保署(2018):https://www.nhi.gov.tw/Content_List.aspx?n=4ECCECAD2500FA7B&topn=CA428784F9ED78C9 ,2018年05月18日取得
  143. 全國法規資料庫網頁(2018):http://law.moj.gov.tw/Law/LawSearchResult.aspx?p=A&t=A1A2E1F1&k1=%E9%86%AB%E7%99%82%E6%B3%95,2018年1月30日取得。
  144. 佘明玲, & 翁儷禎. (2017). 醫師面對老年病人時之電子病歷交換資訊需求與意願的初探研究. 台灣公共衛生雜誌, 36(3), 288-300.
  145. 阮建維, 謝碧容, & 王柏為. (2015). 延伸科技接受理論模型探討醫師對於健保雲端藥歷的行為意圖. 醫療資訊雜誌, 24(3), 27-36.
  146. 邱皓政. (2011). 結構方程模式: LISREL 的理論, 技術與應用: 雙葉書廊.
  147. 張珠萍, 鄭天浚, 蔡佳臻, & 張碩芳. (2015). 探討知識分享行為對於社會交換理論與跨院電子病歷交換意願之中介效果. 台灣公共衛生雜誌, 34(3), 302-318.
  148. 梁定澎. (2012). 資訊管理理論: 前程文化出版總經銷.
  149. 許明輝. (2007). 推動電子病歷跨院資訊交換環境經驗分享. 醫療品質雜誌, 1(6), 45-47.
  150. 陳正昌. (2013). SPSS 與統計分析: 台灣五南圖書出版股份有限公司.
  151. 黃興進, 呂卓勳, 蕭如玲, & 陳瑞甫. (2009). 影響電子病歷交換效益關鍵因素之研究:醫師觀點. [Factors Influencing Benefits of Electronic Medical Records Exchange: Physician Perspectives]. 電子商務學報, 11(1), 95-118. doi:10.6188/jeb.2009.11(1).11
  152. 廖玲嬋, 廖光明, & 黃曉鳳. (2016). 雲端藥歷初期成效分析. 醫療品質雜誌, 10(6), 67-72.
  153. 劉存濱, 謝碧容, & 許時涵. (2014). 探討醫師及藥師對健保雲端藥歷系統期望和感受之間的差異分析. Journal of Health Management, 12(2), 52-66.
  154. 衛生福利部(2002),全國醫療院所電子病歷現況調查http://emr.doh.gov.tw/exProjects.aspx, ,2012年12月10日取得。
  155. 衛生福利部(2005),全國醫療院所電子病歷現況調查:http://emr.doh.gov.tw/exProjects.aspx, ,2013年10月25日取得。
  156. 衛生福利部(2013),電子病歷推動專區:http://emr.doh.gov.tw/allowance.aspx ,2012年12月10日取得。
  157. 衛生福利部 (2015),電子病歷交換中心:http://eec.mohw.gov.tw/?PAGE=Overview,2015年1月05日取得。
  158. 衛生福利部(2015),電子病歷推動專區:http://emr.doh.gov.tw/allowance.aspx ,2015年1月10日取得。
  159. 醫院評鑑暨品質策進委員會,2015。http://www.tjcha.org.tw/FrontStage/download.aspx,2015年1月10日取得。
  160. 簡文山, 徐建業, 楊哲銘, 溫信財, & 李友專. (2007). 電子病歷跨院資訊交換環境對於醫療服務之影響. 醫療品質雜誌, 1(6), 39-44.
  161. 羅紀琼. (2015). 台灣地區論人計酬試辦計畫之評估—以醫院忠誠病人模式為例. 台灣公共衛生雜誌, 34(5), 463-475.