题名

銅核/銀殼奈米線於電化學二氧化碳還原之研究

并列篇名

Synthesis of Copper-Silver Core-shell Nanowires for Electrochemical CO2 Reduction

DOI

10.6342/NTU201704207

作者

楊雯婷

关键词

銅奈米線;二氧化碳還原;臨場粉末繞射 ; copper nanowires ; co2 reduction ; in-situ XRD

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳浩銘

内容语文

繁體中文

中文摘要

大氣中的二氧化碳濃度在過去兩個世紀迅速增加。而電催化還原二氧化碳是減少溫室氣體並將其轉化為有用燃料的有前景的技術。 迄今為止,銅仍然是最受到高度關注的金屬材料,可將二氧化碳還原成碳氫化合物。然而,銅應用於電化學二氧化碳還原的缺點是產物選擇性較差。產物包含氣體和液體。在氣相中,以生成甲烷,乙烷和氫氣為主,而乙醇是液相的主要成分。 在本研究中,我們首先合成銅表面上沉積有薄銀層的銅核/銀殼奈米線。此銅核/銀殼奈米線具有優異的催化活性和二氧化碳電化學還原的產物選擇性。這種複合的銅核/銀殼奈米線材料為電化學還原二氧化碳提供了新的視角和策略。

英文摘要

The atmospheric concentration of carbon dioxide has increased rapidly during the last two centuries. Electrocatalytic reduction of CO2 is a promising technique to decrease the greenhouse gas and convert it into useful fuel. To date, Cu remains the only metal that has shown an unique ability to produce hydrocarbon products. Nevertheless, the deficiency of Cu toward electrochemical CO2 reduction is the poor product selectivity. The product contains gas- and liquid-form components. In gas phase compounds such as methane, ethane and hydrogen have been identified while ethanol is the major component in liquid phase. Herein, we first report the synthesis of copper nanowire (NW) with a thin silver layer deposited on the surface. The synthesized Cu@Ag nanowires with different ratio of Cu to Ag have demonstrated excellent catalytic activity and product selectivity for electrochemical CO2 reduction. This composite Cu-Ag NWs offer a fresh perspective and strategy for electrochemical CO2 reduction.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 10. Reetz, M. T.; Helbig, W., J. Am. Chem. Soc. 1994, 116, 7401-7402.
    連結:
  2. 15. Bignozzi, C. A., Photocatalysis (Topics in Current Chemistry). Springer: 2011.
    連結:
  3. 18. Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry, Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds. Springer: New York, 2008; pp 89-189.
    連結:
  4. 19. Gattrell, M.; Gupta, N.; Co, A., J. Electrochem. Soc. 2006, 594, 1-19.
    連結:
  5. 25. Bergin, S. M.; Chen, Y.-H.; Rathmell, A. R.; Charbonneau, P.; Li, Z.-Y.; Wiley, B. J., Nanoscale 2012, 4, 1996-2004.
    連結:
  6. 28. Ghosh Chaudhuri, R.; Paria, S., Chem. Rev., 2012, 112, 2373-2433.
    連結:
  7. 31. Fahlman, B. D., What is Materials Chemistry? In Materials chemistry, Springer: 2011; pp 1-12.
    連結:
  8. 34. Schnohr, C. S.; Ridgway, M. C., X-ray absorption spectroscopy of semiconductors. Springer: 2015.
    連結:
  9. 38. Ishimaru, S.; Shiratsuchi, R.; Nogami, G., J. Electrochem. Soc. 2000, 147, 1864-1867.
    連結:
  10. 39. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. Cengage learning: 2017.
    連結:
  11. 40. Broekaert, J. A., Analytical and bioanalytical chemistry 2015, 407, 8943-8944.
    連結:
  12. 43. MacLeod, W. D.; Nagy, B., Analytical Chemistry 1968, 40, 841-842.
    連結:
  13. 44. McMurry, J., Organic Chemistry. Thomson: 2008.
    連結:
  14. 45. Nature 1952, 170, 911-912.
    連結:
  15. 50. (a) Padmos, J. D.; Zhang, P., J. Phys. Chem. C 2012, 116, 23094-23101; (b) Padmos, J. D.; Langman, M.; MacDonald, K.; Comeau, P.; Yang, Z.; Filiaggi, M.; Zhang, P., J. Phys. Chem. C 2015, 119, 7472-7482.
    連結:
  16. 53. J. Heyes, M. Dunwell and B. Xu, J. Phys. Chem. C 2016, 120, 17334-17341.
    連結:
  17. 1. https://www.eia.gov/outlooks/ieo/ {Online Access at July, 2017}.
  18. 2. https://www.nps.gov/goga/learn/nature/climate-change-causes.htm {Online Access at July, 2017}.
  19. 3. Nakata, K.; Fujishima, A., J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 169-189.
  20. 4. Klabunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D. G.; Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D., J. Phys. Chem. 1996, 100, 12142-12153.
  21. 5. http://nano.nstm.gov.tw/NanoConcept/NanoTheory/NanoCharacteristic.htm [Online Access at July, 2017].
  22. 6. http://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/quantum-dots.html [Online Access at July, 2017].
  23. 7. http://nano.nstm.gov.tw/Application/Livelyhood/NanoWears.htm [Online Access at July, 2017].
  24. 8. 郭清癸; 黃俊傑; 牟中原, 物理雙月刊 (廿三卷六期) 2001, 614-624.
  25. 9. 張立德, 奈米材料. 五南圖書出版股份有限公司: 2002.
  26. 11. https://twitter.com/ClimateCentral/status/855312905864003585/photo/855312905864003581?ref_src=twsrc%855312905864003585Etfw&ref_url=http%855312905864003583A%855312905864003582F%855312905864003582Fe-info.org.tw%855312905864003582Fnode%855312905864003582F855312905864204444
  27. 12. https://scitechvista.nat.gov.tw/c/YwtC.htm {Online Access at July, 2017].
  28. 13. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Nature 1979, 277, 637-638.
  29. 14. Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C., Nanoscale 2013, 5, 262-268.
  30. 16. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F., J. Am. Chem. Soc. 2014, 136, 14107-14113.
  31. 17. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., Energy Environ. Sci. 2012, 5, 7050-7059.
  32. 20. Sen, S.; Liu, D.; Palmore, G. T. R., ACS Catal. 2014, 4, 3091-3095.
  33. 21. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P., Nat. Commun. 2014, 5, 4948.
  34. 22. Raciti, D.; Livi, K. J.; Wang, C., Nano Lett. 2015, 15, 6829-6835.
  35. 23. Ravi Kumar, D. V.; Kim, I.; Zhong, Z.; Kim, K.; Lee, D.; Moon, J., Phys. Chem. Chem. Phys. 2014, 16, 22107-22115.
  36. 24. Mohl, M.; Pusztai, P.; Kukovecz, A.; Konya, Z.; Kukkola, J.; Kordas, K.; Vajtai, R.; Ajayan, P. M., Langmuir 2010, 26, 16496-16502.
  37. 26. Wiley, B.; Sun, Y.; Xia, Y., Langmuir 2005, 21, 8077-8080.
  38. 27. Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S., Chem. Soc. Rev. 2015, 44, 7540-7590.
  39. 29. Stewart, I. E.; Ye, S.; Chen, Z.; Flowers, P. F.; Wiley, B. J., Chem. Mater. 2015, 27, 7788-7794.
  40. 30. 汪建民, 陳力俊, 材料電子顯微鏡, 精密儀器發展中心 1999, 3.
  41. 32. Ward, B., Development of advanced test methods for the improvement of production standards for ceramic powders used in solid oxide fuel cells. Montana Tech of The University of Montana: 2013.
  42. 33. https://en.wikipedia.org/wiki/Bragg's_law {Online Access at July, 2017}.
  43. 35. http://www.people.com.cn/BIG5/keji/1059/3001907.html
  44. [Online Access at July, 2017].
  45. 36. http://www.nsrrc.org.tw/. [Online Access at July, 2017]
  46. 37. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
  47. 41. (a) https://www.ch.ntu.edu.tw/~chemedu3/Lecture/GC.htm [Online Access at July, 2017]; (b) http://rd.nctu.edu.tw/web.case/nctu-rd-2/upload/ckeditor/20150407092225.pdf [Online Access at July, 2017].
  48. 42. Watson, J. T.; Biemann, K., Analytical Chemistry 1965, 37, 844-851.
  49. 46. (a) http://www.icdd.com/profile/overview.htm [Online Access at July, 2017]; (b) http://comptech.compres.us/tools/jcpds/ [Online Access at July, 2017].
  50. 47. Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., Phys. Chem. Chem. Phys. 2014, 16, 13814-13819.
  51. 48. Kostecki, R.; Augustynski, J., Berichte der Bunsengesellschaft für physikalische Chemie 1994, 98, 1510-1515.
  52. 49. (a) https://www.synchrotron.org.au/images/beamlines/XrayAbsorptionSpectroscopy/foils.pdf [Online Access at July, 2017]; (b) Khemthong, P.; Photai, P.; Grisdanurak, N., International Journal of Hydrogen Energy 2013, 38, 15992-16001.
  53. 51. I. Oda, H. Ogasawara and M. Ito, Langmuir, 1996, 12, 1094-1097.
  54. 52. Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B 1997, 101, 7075-7081.