题名

M1巨噬細胞對於p53突變型肺腺癌細胞的抑癌作用

并列篇名

The anti-tumor effect of M1 macrophage on mutant p53 in lung adenocarcinoma cells

DOI

10.6342/NTU201900481

作者

顧效羽

关键词

非小細胞肺癌 ; M1巨噬細胞 ; p53 ; 致癌基因 ; β型干擾素 ; Non-small cell lung cancer ; M1 Macrophage ; p53 ; Oncogene ; IFN-β

期刊名称

國立臺灣大學醫學檢驗暨生物技術學系學位論文

卷期/出版年月

2019年

学位类别

碩士

导师

俞松良

内容语文

英文

中文摘要

腫瘤相關巨噬細胞分群在腫瘤微環境中扮演著關鍵的角色。其中,M1巨噬細胞(M1 Macrophage, M1)具有抑制腫瘤的能力。另一方面,轉錄因子p53的突變會使p53從原先的抑癌基因轉變成致癌基因,而這種突變亦廣泛地在人類腫瘤中被發現。實驗室先前研究已知M1會透過促進正常p53堆積,使帶有野生型p53的A549肺癌細胞經由自噬作用而凋亡,但對於具有突變型p53的腫瘤細胞是否有抑制效果仍未知。 首先我們利用p53缺失的非小細胞肺癌細胞株H1299,分別轉送突變型p53-R175H和p53-R273H,接著以THP-1單核球細胞株分化成的M0、M1巨噬細胞,個別收集巨噬細胞培養液(condition medium, CM)後,以CM培養H1299細胞進行後續實驗。我們發現M1 CM培養能夠降低突變型p53所促進的細胞遷移與增生能力,在克隆形成試驗中,M1 CM具有減少克隆數量的能力。而在帶有內生突變型p53的細胞株H1975(p53R273H)和CL1-0 (p53R248W)中,M1 CM對於細胞同樣具有抑制克隆形成的效果,並且我們發現突變型p53的mRNA和蛋白質表現皆在M1 CM培養後下降。另以p53靜默試驗減少表現細胞中突變型p53之後,也確認細胞生長能力會受到突變型p53表現減少而降低。在M1 CM組別中,我們發現突變型p53 mRNA有較高的降解率,同時也觀察到結合在p53 mRNA 3’UTR上維持mRNA穩定的調控蛋白-Wig-1表現亦在M1 CM培養組別中下降。為了找出M1 CM如何調控WIG-1,我們利用MetaCore分析M1 CM中的轉錄蛋白體(transcriptome) 並且找到IFN-β。以中和型IFN-β抗體添加在M1 CM中能有效使WIG-1和突變型p53所減少的表現回復,而以IFN-β培養細胞時,則能夠降低WIG-1和突變型p53的表現。此外,我們還發現在缺乏3’UTR的轉送突變型p53 H1299細胞株中,p53蛋白表現亦會受到M1 CM所抑制,同時伴隨著蛋白質半衰期下降。顯示了M1 巨噬細胞對於突變型p53有著多重的調控機制。 在本篇實驗中,我們發現M1巨噬細胞透過增加突變型p53 mRNA和蛋白質降解減少突變型p53的表現,最終抑制了突變型p53的促癌能力。而M1 CM其中的IFN-β能透過抑制WIG-1表現,加速了mRNA的降解率,最終導致p53表現減少、促癌能力下降。

英文摘要

Tumor-associated macrophages (TAMs) are critical factors for the plasticity in the tumor microenvironment. Among the TAMs subtypes, M1 macrophage (M1) has the anti-tumor capability. The well-known tumor suppressor p53 is frequently mutated in human cancers, leading to gain of the oncogenic functions. Our preliminary study showed that M1 macrophages are able to induce lung cancer cells apoptosis through stabilizing p53 protein. However, the effects of M1 macrophage on mutant p53 are still unclear. First, the mutant p53R175H and p53R273H were stably ectopic-expressed in H1299 cells, and then the cells were treated with conditioned medium (CM) from the THP-1-polarized M0 and M1 macrophages. In functional assays, M1 CM decreased the cell viability, cell proliferation, and both anchorage-independent and anchorage-dependent colony formations that were all elevated by mutant p53 in H1299 cells. On endogenous mutant p53 cells, M1 CM not only reduced the anchorage-dependent colony formation, but also decreased the mRNA and protein of mutant p53 in H1975(p53R273H) and CL1-0(p53R248W) cells. The cell growth abilities suppressed by silencing mutant p53 indicates the gain-of-function of mutant p53 in H1975 and CL1-0 cells. Furthermore, the mutant p53 mRNA showed higher decay rate in M1 CM than in M0 CM treatment. We noticed that M1 CM also reduced WIG-1 expression, whose functions as a p53 mRNA stabilizer via binding 3’UTR of mRNA. To identify by which ligand-induced signaling reduces WIG-1, the transcriptome of M1 macrophage was analyzed with MetaCore and IFN-β was identified. Indeed, neutralizing IFN-β could reverse the decrease of WIG-1 and p53 caused by M1 CM. Otherwise, IFN-β addition suppressed mutant p53 and WIG-1 expression. However, the expression of exogenous mutant p53 lacking 3’UTR is still reduced by M1 CM in H1299 cells. Here, we presented the data revealing that p53R175H protein has shorter half-life in M1 CM compared to M0 CM. Collectively, the results demonstrated the complex influences of M1 macrophages on mutant p53. This study showed that M1 macrophages suppress the oncogenic functions of mutant p53 by inhibiting p53 via accelerating p53 decay at mRNA and protein levels. Obviously, IFN-β in M1 CM is a key mediator which down-regulates WIG-1 expression, following accelerated the decay rate of mutant p53, finally decreased the mutant p53 expression and cell malignancy.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 醫學檢驗暨生物技術學系
参考文献
  1. 1. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F.: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. no. 11 [Internet], 2013
  2. 2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA Cancer J Clin 68:7-30, 2018
  3. 3. Herbst RS, Heymach JV, Lippman SM: Lung Cancer. New England Journal of Medicine 359:1367-1380, 2008
  4. 4. Linnoila I: Pathology of non-small cell lung cancer. New diagnostic approaches. Hematology/oncology clinics of North America 4:1027-1051, 1990
  5. 5. Goldstraw P, Chansky K, Crowley J, et al: The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology 11:39-51, 2016
  6. 6. Morgensztern D, Ng SH, Gao F, et al: Trends in Stage Distribution for Patients with Non-small Cell Lung Cancer: A National Cancer Database Survey. Journal of Thoracic Oncology 5:29-33, 2010
  7. 7. Marks JL, Broderick S, Zhou Q, et al: Prognostic and Therapeutic Implications of EGFR and KRAS Mutations in Resected Lung Adenocarcinoma. Journal of Thoracic Oncology 3:111-116, 2008
  8. 8. Pao W, Chmielecki J: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760-74, 2010
  9. 9. Mok TS, Wu Y-L, Thongprasert S, et al: Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine 361:947-957, 2009
  10. 10. Iwai Y, Hamanishi J, Chamoto K, et al: Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science 24:26, 2017
  11. 11. Linsley PS, Brady W, Urnes M, et al: CTLA-4 is a second receptor for the B cell activation antigen B7. The Journal of Experimental Medicine 174:561, 1991
  12. 12. Rowshanravan B, Halliday N, Sansom DM: CTLA-4: a moving target in immunotherapy. Blood 131:58, 2018
  13. 13. Barber DL, Wherry EJ, Masopust D, et al: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682, 2005
  14. 14. Iwai Y, Terawaki S, Ikegawa M, et al: PD-1 Inhibits Antiviral Immunity at the Effector Phase in the Liver. The Journal of Experimental Medicine 198:39, 2003
  15. 15. Walker LSK: Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity 45:49-57, 2013
  16. 16. Sharma P, Allison JP: The future of immune checkpoint therapy. Science 348:56, 2015
  17. 17. Calabrò L, Morra A, Fonsatti E, et al: Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. The Lancet Oncology 14:1104-1111, 2013
  18. 18. Carthon BC, Wolchok JD, Yuan J, et al: Preoperative CTLA-4 Blockade: Tolerability and Immune Monitoring in the Setting of a Presurgical Clinical Trial. Clinical Cancer Research 16:2861, 2010
  19. 19. Lynch TJ, Bondarenko I, Luft A, et al: Ipilimumab in Combination With Paclitaxel and Carboplatin As First-Line Treatment in Stage IIIB/IV Non–Small-Cell Lung Cancer: Results From a Randomized, Double-Blind, Multicenter Phase II Study. Journal of Clinical Oncology 30:2046-2054, 2012
  20. 20. Orimo A, Gupta PB, Sgroi DC, et al: Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 121:335-348, 2005
  21. 21. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nature reviews. Cancer 9:239-252, 2009
  22. 22. Coussens LM, Werb Z: Inflammation and cancer. Nature 420:860-867, 2002
  23. 23. Mantovani A, Allavena P, Sica A, et al: Cancer-related inflammation. Nature 454:436, 2008
  24. 24. Porta C, Larghi P, Rimoldi M, et al: Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214:761-777, 2009
  25. 25. Noy R, Pollard JW: Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49-61, 2014
  26. 26. Zhang Q-w, Liu L, Gong C-y, et al: Prognostic Significance of Tumor-Associated Macrophages in Solid Tumor: A Meta-Analysis of the Literature. PLoS ONE 7:e50946, 2012
  27. 27. Nabeshima A, Matsumoto Y, Fukushi J, et al: Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways. British Journal of Cancer 112:547-555, 2015
  28. 28. Grivennikov SI, Greten FR, Karin M: Immunity, Inflammation, and Cancer. Cell 140:883-899
  29. 29. Tsung K, Dolan JP, Tsung YL, et al: Macrophages as Effector Cells in Interleukin 12-induced T Cell-dependent Tumor Rejection. Cancer Research 62:5069, 2002
  30. 30. Villeneuve J, Tremblay P, Vallières L: Tumor Necrosis Factor Reduces Brain Tumor Growth by Enhancing Macrophage Recruitment and Microcyst Formation. Cancer Research 65:3928, 2005
  31. 31. Welsh TJ, Green RH, Richardson D, et al: Macrophage and Mast-Cell Invasion of Tumor Cell Islets Confers a Marked Survival Advantage in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 23:8959-8967, 2005
  32. 32. Ohri CM, Shikotra A, Green RH, et al: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. European Respiratory Journal 33:118, 2009
  33. 33. Yuan A, Hsiao Y-J, Chen H-Y, et al: Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Scientific Reports 5:14273, 2015
  34. 34. Ma J, Liu L, Che G, et al: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112-112, 2010
  35. 35. Zhang B, Yao G, Zhang Y, et al: M2-Polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics 66:1879-1886, 2011
  36. 36. Grivennikov SI, Wang K, Mucida D, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254-258, 2012
  37. 37. Kong L, Zhou Y, Bu H, et al: Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. Journal of Experimental & Clinical Cancer Research 35:131, 2016
  38. 38. Xie C, Liu C, Wu B, et al: Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. International Journal of Molecular Medicine 38:148-160, 2016
  39. 39. Johns TG, Mackay IR, Callister KA, et al: Antiproliferative Potencies of Interferons on Melanoma Cell Lines and Xenografts: Higher Efficacy of Interferon β. JNCI: Journal of the National Cancer Institute 84:1185-1190, 1992
  40. 40. Wong Vicky LY, Rieman Dave J, Aronson L, et al: Growth‐inhibitory activity of interferon‐beta against human colorectal carcinoma cell lines. International Journal of Cancer 43:526-530, 1989
  41. 41. Doherty MR, Cheon H, Junk DJ, et al: Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America 114:13792-13797, 2017
  42. 42. Chawla-Sarkar M, Leaman DW, Borden EC: Preferential Induction of Apoptosis by Interferon (IFN)-β Compared with IFN-α2. Clinical Cancer Research 7:1821, 2001
  43. 43. Zhang H, Koty PP, Mayotte J, et al: Induction of Multiple Programmed Cell Death Pathways by IFN-β in Human Non-Small-Cell Lung Cancer Cell Lines. Experimental Cell Research 247:133-141, 1999
  44. 44. Bekisz J, Baron S, Balinsky C, et al: Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals 3:994-1015, 2010
  45. 45. Parker BS, Rautela J, Hertzog PJ: Antitumour actions of interferons: implications for cancer therapy. Nature Reviews Cancer 16:131, 2016
  46. 46. Zhang F, Sriram S: Identification and characterization of the interferon-β-mediated p53 signal pathway in human peripheral blood mononuclear cells. Immunology 128:e905-e918, 2009
  47. 47. Chiantore MV, Vannucchi S, Accardi R, et al: Interferon-β Induces Cellular Senescence in Cutaneous Human Papilloma Virus-Transformed Human Keratinocytes by Affecting p53 Transactivating Activity. PLoS ONE 7:e36909, 2012
  48. 48. Takaoka A, Hayakawa S, Yanai H, et al: Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516, 2003
  49. 49. Xue W, Zender L, Miething C, et al: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656, 2007
  50. 50. Lowe SW, Schmitt EM, Smith SW, et al: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847, 1993
  51. 51. Ventura A, Kirsch DG, McLaughlin ME, et al: Restoration of p53 function leads to tumour regression in vivo. Nature 445:661, 2007
  52. 52. Symonds H, Krall L, Remington L, et al: p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703-711, 1994
  53. 53. Olivier M, Hollstein M, Hainaut P: TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspectives in Biology 2:a001008, 2010
  54. 54. Hollstein M, Sidransky D, Vogelstein B, et al: p53 mutations in human cancers. Science 253:49, 1991
  55. 55. Langerød A, Zhao H, Borgan Ø, et al: TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Research 9:R30-R30, 2007
  56. 56. Wang Y, Kringen P, Kristensen GB, et al: Effect of the codon 72 polymorphism (c.215G>C, p.Arg72Pro) in combination with somatic sequence variants in the TP53 gene on survival in patients with advanced ovarian carcinoma. Human Mutation 24:21-34, 2004
  57. 57. Wang Y, Helland Å, Holm R, et al: TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. British Journal of Cancer 90:678-685, 2004
  58. 58. Cho Y, Gorina S, Jeffrey PD, et al: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346, 1994
  59. 59. Noa R, Ran B, Moshe O, et al: Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & Cancer 2:466-474, 2011
  60. 60. Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer 9:701, 2009
  61. 61. Oren M, Rotter V: Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology 2:a001107, 2010
  62. 62. Muller Patricia AJ, Vousden Karen H: Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell 25:304-317
  63. 63. Hanel W, Marchenko N, Xu S, et al: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death And Differentiation 20:898, 2013
  64. 64. Alexandrova EM, Yallowitz AR, Li D, et al: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523:352, 2015
  65. 65. Skaug V, Ryberg D, Arab EHKMO, et al: p53 Mutations in Defined Structural and Functional Domains Are Related to Poor Clinical Outcome in Non-Small Cell Lung Cancer Patients. Clinical Cancer Research 6:1031, 2000
  66. 66. Ahrendt SA, Hu Y, Buta M, et al: p53 Mutations and Survival in Stage I Non-Small-Cell Lung Cancer: Results of a Prospective Study. JNCI: Journal of the National Cancer Institute 95:961-970, 2003
  67. 67. Malkin D, Li FP, Strong LC, et al: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233, 1990
  68. 68. Miller LD, Smeds J, George J, et al: An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America 102:13550-13555, 2005
  69. 69. Katkoori VR, Jia X, Shanmugam C, et al: Prognostic Significance of p53 Codon 72 Polymorphism Differs with Race in Colorectal Adenocarcinoma. Clinical Cancer Research 15:2406, 2009
  70. 70. Samowitz WS, Curtin K, Ma K-n, et al: Prognostic significance of p53 mutations in colon cancer at the population level. International Journal of Cancer 99:597-602, 2002
  71. 71. Kubbutat MHG, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387:299, 1997
  72. 72. Kussie PH, Gorina S, Marechal V, et al: Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain. Science 274:948, 1996
  73. 73. Oliner JD, Pietenpol JA, Thiagalingam S, et al: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857, 1993
  74. 74. Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell 137:413-431, 2009
  75. 75. Prives C: Signaling to p53: Breaking the MDM2–p53 Circuit. Cell 95:5-8, 1998
  76. 76. Goh Amanda M, Coffill Cynthia R, Lane David P: The role of mutant p53 in human cancer. The Journal of Pathology 223:116-126, 2010
  77. 77. Terzian T, Suh Y-A, Iwakuma T, et al: The inherent instability of mutant p53 is alleviated by Mdm2 or p16(INK4a) loss. Genes & Development 22:1337-1344, 2008
  78. 78. Prives C, White E: Does control of mutant p53 by Mdm2 complicate cancer therapy? Genes & Development 22:1259-1264, 2008
  79. 79. Mosner J, Mummenbrauer T, Bauer C, et al: Negative feedback regulation of wild-type p53 biosynthesis. The EMBO Journal 14:4442-4449, 1995
  80. 80. Vilborg A, Wilhelm MT, Wiman KG: Regulation of tumor suppressor p53 at the RNA level. Journal of Molecular Medicine 88:645-652, 2010
  81. 81. Mazan-Mamczarz K, Galbán S, de Silanes IL, et al: RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America 100:8354-8359, 2003
  82. 82. Hinman MN, Lou H: Diverse molecular functions of Hu proteins. Cellular and molecular life sciences : CMLS 65:3168-3181, 2008
  83. 83. Dixon DA, Tolley ND, King PH, et al: Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. Journal of Clinical Investigation 108:1657-1665, 2001
  84. 84. Abdelmohsen K, Gorospe M: Post-transcriptional regulation of cancer traits by HuR. Wiley interdisciplinary reviews. RNA 1:10.1002/wrna.4, 2010
  85. 85. Israeli D, Tessler E, Haupt Y, et al: A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. The EMBO Journal 16:4384-4392, 1997
  86. 86. Vilborg A, Bersani C, Wilhelm MT, et al: The p53 target Wig-1: a regulator of mRNA stability and stem cell fate? Cell Death and Differentiation 18:1434-1440, 2011
  87. 87. Hellborg F, Qian W, Mendez-Vidal C, et al: Human wig-1, a p53 target gene that encodes a growth inhibitory zinc finger protein. Oncogene 20:5466, 2001
  88. 88. Vilborg A, Glahder JA, Wilhelm MT, et al: The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element. Proceedings of the National Academy of Sciences of the United States of America 106:15756-15761, 2009
  89. 89. Madar S, Harel E, Goldstein I, et al: Mutant p53 Attenuates the Anti-Tumorigenic Activity of Fibroblasts-Secreted Interferon Beta. PLoS ONE 8:e61353, 2013
  90. 90. Vilborg A, Bersani C, Wickström M, et al: Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth. Cell Death & Disease 3:e298, 2012
  91. 91. Weiskopf K, Weissman IL: Macrophages are critical effectors of antibody therapies for cancer. mAbs 7:303-310, 2015
  92. 92. Weisser SB, McLarren KW, Kuroda E, et al: Generation and Characterization of Murine Alternatively Activated Macrophages, in Helgason CD, Miller CL (eds): Basic Cell Culture Protocols. Totowa, NJ, Humana Press, 2013, pp 225-239
  93. 93. Jiang H, Stewart CA, Fast DJ, et al: Tumor target-derived soluble factor synergizes with IFN-γ and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target. Journal of Immunology 149:2137-2146, 1992
  94. 94. Tan H-Y, Wang N, Li S, et al: The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxidative Medicine and Cellular Longevity 2016:16, 2016
  95. 95. Ozakbas S, Cinar B, Kosehasanoğullari G, et al: Monthly methylprednisolone in combination with interferon beta or glatiramer acetate for relapsing-remitting multiple sclerosis: A multicentre, single-blind, prospective trial, 2017
  96. 96. Namikawa K, Tsutsumida A, Mizutani T, et al: Randomized phase III trial of adjuvant therapy with locoregional interferon beta versus surgery alone in stage II/III cutaneous melanoma: Japan Clinical Oncology Group Study (JCOG1309, J-FERON). Japanese Journal of Clinical Oncology 47:664-667, 2017
  97. 97. Shakado S, Iwata K, Tsuchiya N, et al: Pilot Study of Hepatic Arterial Infusion Chemotherapy with Interferon-beta and 5-fluorouracil: A New Chemotherapy for Patients with Advanced Hepatocellular Carcinoma. Hepatogastroenterology 61:557-62, 2014
  98. 98. Duffy MJ, Synnott NC, Crown J: Mutant p53 as a target for cancer treatment. European Journal of Cancer 83:258-265, 2017
  99. 99. Xiao J, Zhou J, Fu M, et al: Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncol Lett 13:3676-3680, 2017
  100. 100. Pearson S, Jia H, Kandachi K: China approves first gene therapy. Nature Biotechnology 22:3, 2004
  101. 101. Gabrilovich DI: INGN 201 (Advexin®): adenoviral p53 gene therapy for cancer. Expert Opinion on Biological Therapy 6:823-832, 2006
  102. 102. Chen G-x, Zhang S, He X-h, et al: Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives. OncoTargets and therapy 7:1901-1909, 2014
  103. 103. Blandino G, Levine AJ, Oren M: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477, 1999
  104. 104. Tan BS, Tiong KH, Choo HL, et al: Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death &Amp; Disease 6:e1826, 2015