参考文献
|
-
1. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F.: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. no. 11 [Internet], 2013
-
2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA Cancer J Clin 68:7-30, 2018
-
3. Herbst RS, Heymach JV, Lippman SM: Lung Cancer. New England Journal of Medicine 359:1367-1380, 2008
-
4. Linnoila I: Pathology of non-small cell lung cancer. New diagnostic approaches. Hematology/oncology clinics of North America 4:1027-1051, 1990
-
5. Goldstraw P, Chansky K, Crowley J, et al: The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology 11:39-51, 2016
-
6. Morgensztern D, Ng SH, Gao F, et al: Trends in Stage Distribution for Patients with Non-small Cell Lung Cancer: A National Cancer Database Survey. Journal of Thoracic Oncology 5:29-33, 2010
-
7. Marks JL, Broderick S, Zhou Q, et al: Prognostic and Therapeutic Implications of EGFR and KRAS Mutations in Resected Lung Adenocarcinoma. Journal of Thoracic Oncology 3:111-116, 2008
-
8. Pao W, Chmielecki J: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760-74, 2010
-
9. Mok TS, Wu Y-L, Thongprasert S, et al: Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine 361:947-957, 2009
-
10. Iwai Y, Hamanishi J, Chamoto K, et al: Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science 24:26, 2017
-
11. Linsley PS, Brady W, Urnes M, et al: CTLA-4 is a second receptor for the B cell activation antigen B7. The Journal of Experimental Medicine 174:561, 1991
-
12. Rowshanravan B, Halliday N, Sansom DM: CTLA-4: a moving target in immunotherapy. Blood 131:58, 2018
-
13. Barber DL, Wherry EJ, Masopust D, et al: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682, 2005
-
14. Iwai Y, Terawaki S, Ikegawa M, et al: PD-1 Inhibits Antiviral Immunity at the Effector Phase in the Liver. The Journal of Experimental Medicine 198:39, 2003
-
15. Walker LSK: Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity 45:49-57, 2013
-
16. Sharma P, Allison JP: The future of immune checkpoint therapy. Science 348:56, 2015
-
17. Calabrò L, Morra A, Fonsatti E, et al: Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. The Lancet Oncology 14:1104-1111, 2013
-
18. Carthon BC, Wolchok JD, Yuan J, et al: Preoperative CTLA-4 Blockade: Tolerability and Immune Monitoring in the Setting of a Presurgical Clinical Trial. Clinical Cancer Research 16:2861, 2010
-
19. Lynch TJ, Bondarenko I, Luft A, et al: Ipilimumab in Combination With Paclitaxel and Carboplatin As First-Line Treatment in Stage IIIB/IV Non–Small-Cell Lung Cancer: Results From a Randomized, Double-Blind, Multicenter Phase II Study. Journal of Clinical Oncology 30:2046-2054, 2012
-
20. Orimo A, Gupta PB, Sgroi DC, et al: Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 121:335-348, 2005
-
21. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nature reviews. Cancer 9:239-252, 2009
-
22. Coussens LM, Werb Z: Inflammation and cancer. Nature 420:860-867, 2002
-
23. Mantovani A, Allavena P, Sica A, et al: Cancer-related inflammation. Nature 454:436, 2008
-
24. Porta C, Larghi P, Rimoldi M, et al: Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214:761-777, 2009
-
25. Noy R, Pollard JW: Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49-61, 2014
-
26. Zhang Q-w, Liu L, Gong C-y, et al: Prognostic Significance of Tumor-Associated Macrophages in Solid Tumor: A Meta-Analysis of the Literature. PLoS ONE 7:e50946, 2012
-
27. Nabeshima A, Matsumoto Y, Fukushi J, et al: Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways. British Journal of Cancer 112:547-555, 2015
-
28. Grivennikov SI, Greten FR, Karin M: Immunity, Inflammation, and Cancer. Cell 140:883-899
-
29. Tsung K, Dolan JP, Tsung YL, et al: Macrophages as Effector Cells in Interleukin 12-induced T Cell-dependent Tumor Rejection. Cancer Research 62:5069, 2002
-
30. Villeneuve J, Tremblay P, Vallières L: Tumor Necrosis Factor Reduces Brain Tumor Growth by Enhancing Macrophage Recruitment and Microcyst Formation. Cancer Research 65:3928, 2005
-
31. Welsh TJ, Green RH, Richardson D, et al: Macrophage and Mast-Cell Invasion of Tumor Cell Islets Confers a Marked Survival Advantage in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 23:8959-8967, 2005
-
32. Ohri CM, Shikotra A, Green RH, et al: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. European Respiratory Journal 33:118, 2009
-
33. Yuan A, Hsiao Y-J, Chen H-Y, et al: Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Scientific Reports 5:14273, 2015
-
34. Ma J, Liu L, Che G, et al: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112-112, 2010
-
35. Zhang B, Yao G, Zhang Y, et al: M2-Polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics 66:1879-1886, 2011
-
36. Grivennikov SI, Wang K, Mucida D, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254-258, 2012
-
37. Kong L, Zhou Y, Bu H, et al: Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. Journal of Experimental & Clinical Cancer Research 35:131, 2016
-
38. Xie C, Liu C, Wu B, et al: Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. International Journal of Molecular Medicine 38:148-160, 2016
-
39. Johns TG, Mackay IR, Callister KA, et al: Antiproliferative Potencies of Interferons on Melanoma Cell Lines and Xenografts: Higher Efficacy of Interferon β. JNCI: Journal of the National Cancer Institute 84:1185-1190, 1992
-
40. Wong Vicky LY, Rieman Dave J, Aronson L, et al: Growth‐inhibitory activity of interferon‐beta against human colorectal carcinoma cell lines. International Journal of Cancer 43:526-530, 1989
-
41. Doherty MR, Cheon H, Junk DJ, et al: Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America 114:13792-13797, 2017
-
42. Chawla-Sarkar M, Leaman DW, Borden EC: Preferential Induction of Apoptosis by Interferon (IFN)-β Compared with IFN-α2. Clinical Cancer Research 7:1821, 2001
-
43. Zhang H, Koty PP, Mayotte J, et al: Induction of Multiple Programmed Cell Death Pathways by IFN-β in Human Non-Small-Cell Lung Cancer Cell Lines. Experimental Cell Research 247:133-141, 1999
-
44. Bekisz J, Baron S, Balinsky C, et al: Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals 3:994-1015, 2010
-
45. Parker BS, Rautela J, Hertzog PJ: Antitumour actions of interferons: implications for cancer therapy. Nature Reviews Cancer 16:131, 2016
-
46. Zhang F, Sriram S: Identification and characterization of the interferon-β-mediated p53 signal pathway in human peripheral blood mononuclear cells. Immunology 128:e905-e918, 2009
-
47. Chiantore MV, Vannucchi S, Accardi R, et al: Interferon-β Induces Cellular Senescence in Cutaneous Human Papilloma Virus-Transformed Human Keratinocytes by Affecting p53 Transactivating Activity. PLoS ONE 7:e36909, 2012
-
48. Takaoka A, Hayakawa S, Yanai H, et al: Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516, 2003
-
49. Xue W, Zender L, Miething C, et al: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656, 2007
-
50. Lowe SW, Schmitt EM, Smith SW, et al: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847, 1993
-
51. Ventura A, Kirsch DG, McLaughlin ME, et al: Restoration of p53 function leads to tumour regression in vivo. Nature 445:661, 2007
-
52. Symonds H, Krall L, Remington L, et al: p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703-711, 1994
-
53. Olivier M, Hollstein M, Hainaut P: TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspectives in Biology 2:a001008, 2010
-
54. Hollstein M, Sidransky D, Vogelstein B, et al: p53 mutations in human cancers. Science 253:49, 1991
-
55. Langerød A, Zhao H, Borgan Ø, et al: TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Research 9:R30-R30, 2007
-
56. Wang Y, Kringen P, Kristensen GB, et al: Effect of the codon 72 polymorphism (c.215G>C, p.Arg72Pro) in combination with somatic sequence variants in the TP53 gene on survival in patients with advanced ovarian carcinoma. Human Mutation 24:21-34, 2004
-
57. Wang Y, Helland Å, Holm R, et al: TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. British Journal of Cancer 90:678-685, 2004
-
58. Cho Y, Gorina S, Jeffrey PD, et al: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346, 1994
-
59. Noa R, Ran B, Moshe O, et al: Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & Cancer 2:466-474, 2011
-
60. Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer 9:701, 2009
-
61. Oren M, Rotter V: Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology 2:a001107, 2010
-
62. Muller Patricia AJ, Vousden Karen H: Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell 25:304-317
-
63. Hanel W, Marchenko N, Xu S, et al: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death And Differentiation 20:898, 2013
-
64. Alexandrova EM, Yallowitz AR, Li D, et al: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523:352, 2015
-
65. Skaug V, Ryberg D, Arab EHKMO, et al: p53 Mutations in Defined Structural and Functional Domains Are Related to Poor Clinical Outcome in Non-Small Cell Lung Cancer Patients. Clinical Cancer Research 6:1031, 2000
-
66. Ahrendt SA, Hu Y, Buta M, et al: p53 Mutations and Survival in Stage I Non-Small-Cell Lung Cancer: Results of a Prospective Study. JNCI: Journal of the National Cancer Institute 95:961-970, 2003
-
67. Malkin D, Li FP, Strong LC, et al: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233, 1990
-
68. Miller LD, Smeds J, George J, et al: An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America 102:13550-13555, 2005
-
69. Katkoori VR, Jia X, Shanmugam C, et al: Prognostic Significance of p53 Codon 72 Polymorphism Differs with Race in Colorectal Adenocarcinoma. Clinical Cancer Research 15:2406, 2009
-
70. Samowitz WS, Curtin K, Ma K-n, et al: Prognostic significance of p53 mutations in colon cancer at the population level. International Journal of Cancer 99:597-602, 2002
-
71. Kubbutat MHG, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387:299, 1997
-
72. Kussie PH, Gorina S, Marechal V, et al: Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain. Science 274:948, 1996
-
73. Oliner JD, Pietenpol JA, Thiagalingam S, et al: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857, 1993
-
74. Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell 137:413-431, 2009
-
75. Prives C: Signaling to p53: Breaking the MDM2–p53 Circuit. Cell 95:5-8, 1998
-
76. Goh Amanda M, Coffill Cynthia R, Lane David P: The role of mutant p53 in human cancer. The Journal of Pathology 223:116-126, 2010
-
77. Terzian T, Suh Y-A, Iwakuma T, et al: The inherent instability of mutant p53 is alleviated by Mdm2 or p16(INK4a) loss. Genes & Development 22:1337-1344, 2008
-
78. Prives C, White E: Does control of mutant p53 by Mdm2 complicate cancer therapy? Genes & Development 22:1259-1264, 2008
-
79. Mosner J, Mummenbrauer T, Bauer C, et al: Negative feedback regulation of wild-type p53 biosynthesis. The EMBO Journal 14:4442-4449, 1995
-
80. Vilborg A, Wilhelm MT, Wiman KG: Regulation of tumor suppressor p53 at the RNA level. Journal of Molecular Medicine 88:645-652, 2010
-
81. Mazan-Mamczarz K, Galbán S, de Silanes IL, et al: RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America 100:8354-8359, 2003
-
82. Hinman MN, Lou H: Diverse molecular functions of Hu proteins. Cellular and molecular life sciences : CMLS 65:3168-3181, 2008
-
83. Dixon DA, Tolley ND, King PH, et al: Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. Journal of Clinical Investigation 108:1657-1665, 2001
-
84. Abdelmohsen K, Gorospe M: Post-transcriptional regulation of cancer traits by HuR. Wiley interdisciplinary reviews. RNA 1:10.1002/wrna.4, 2010
-
85. Israeli D, Tessler E, Haupt Y, et al: A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. The EMBO Journal 16:4384-4392, 1997
-
86. Vilborg A, Bersani C, Wilhelm MT, et al: The p53 target Wig-1: a regulator of mRNA stability and stem cell fate? Cell Death and Differentiation 18:1434-1440, 2011
-
87. Hellborg F, Qian W, Mendez-Vidal C, et al: Human wig-1, a p53 target gene that encodes a growth inhibitory zinc finger protein. Oncogene 20:5466, 2001
-
88. Vilborg A, Glahder JA, Wilhelm MT, et al: The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element. Proceedings of the National Academy of Sciences of the United States of America 106:15756-15761, 2009
-
89. Madar S, Harel E, Goldstein I, et al: Mutant p53 Attenuates the Anti-Tumorigenic Activity of Fibroblasts-Secreted Interferon Beta. PLoS ONE 8:e61353, 2013
-
90. Vilborg A, Bersani C, Wickström M, et al: Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth. Cell Death & Disease 3:e298, 2012
-
91. Weiskopf K, Weissman IL: Macrophages are critical effectors of antibody therapies for cancer. mAbs 7:303-310, 2015
-
92. Weisser SB, McLarren KW, Kuroda E, et al: Generation and Characterization of Murine Alternatively Activated Macrophages, in Helgason CD, Miller CL (eds): Basic Cell Culture Protocols. Totowa, NJ, Humana Press, 2013, pp 225-239
-
93. Jiang H, Stewart CA, Fast DJ, et al: Tumor target-derived soluble factor synergizes with IFN-γ and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target. Journal of Immunology 149:2137-2146, 1992
-
94. Tan H-Y, Wang N, Li S, et al: The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxidative Medicine and Cellular Longevity 2016:16, 2016
-
95. Ozakbas S, Cinar B, Kosehasanoğullari G, et al: Monthly methylprednisolone in combination with interferon beta or glatiramer acetate for relapsing-remitting multiple sclerosis: A multicentre, single-blind, prospective trial, 2017
-
96. Namikawa K, Tsutsumida A, Mizutani T, et al: Randomized phase III trial of adjuvant therapy with locoregional interferon beta versus surgery alone in stage II/III cutaneous melanoma: Japan Clinical Oncology Group Study (JCOG1309, J-FERON). Japanese Journal of Clinical Oncology 47:664-667, 2017
-
97. Shakado S, Iwata K, Tsuchiya N, et al: Pilot Study of Hepatic Arterial Infusion Chemotherapy with Interferon-beta and 5-fluorouracil: A New Chemotherapy for Patients with Advanced Hepatocellular Carcinoma. Hepatogastroenterology 61:557-62, 2014
-
98. Duffy MJ, Synnott NC, Crown J: Mutant p53 as a target for cancer treatment. European Journal of Cancer 83:258-265, 2017
-
99. Xiao J, Zhou J, Fu M, et al: Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncol Lett 13:3676-3680, 2017
-
100. Pearson S, Jia H, Kandachi K: China approves first gene therapy. Nature Biotechnology 22:3, 2004
-
101. Gabrilovich DI: INGN 201 (Advexin®): adenoviral p53 gene therapy for cancer. Expert Opinion on Biological Therapy 6:823-832, 2006
-
102. Chen G-x, Zhang S, He X-h, et al: Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives. OncoTargets and therapy 7:1901-1909, 2014
-
103. Blandino G, Levine AJ, Oren M: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477, 1999
-
104. Tan BS, Tiong KH, Choo HL, et al: Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death &Amp; Disease 6:e1826, 2015
|