题名

鑭鍶錳氧與白金鈀金雙層膜結構之自旋幫浦效應

并列篇名

Spin Pumping Effect in (La, Sr)MnO3 Capped with Pt or Pd

DOI

10.6342/NTU201602452

作者

駱冠宇

关键词

自旋電子學 ; spintronics

期刊名称

國立臺灣大學物理學系學位論文

卷期/出版年月

2016年

学位类别

博士

导师

林昭吟

内容语文

英文

英文摘要

Ferromagnetic resonance (FMR) driven spin pumping is a novel method to transfer spin angular momentum from the ferromagnetic (FM) layer into the adjacent nonmagnetic metal (NM) layer in an FM/NM bilayer system. Consequently, the spin current can be probed in the NM layer via inverse spin Hall effect (ISHE) when spin-charge conversion occurs. Although a scaling behavior of the ISHE voltage vs. FMR pumping angle was observed in various FM/Pt bilayers with FM being a Heusler alloy, ferromagnetic oxide spinel and dilute magnetic semiconductor, the influences of conductivity and the interface properties on the spin current density are still not well understood. Among many, Pt is considered as the most effective NM for spin-charge conversion due to its strong spin orbital coupling. In contrast with previous reports, we grow Pt and Pd on La0.7Sr0.3MnO3 (LSMO) and study the spin transport properties of these two systems. By fitting with the spin pumping model, the values of spin transport parameters are obtained, including the interface spin mixing conductance, the spin diffusion length of Pt(Pd) and spin Hall angle. The values for LSMO/Pt (LSMO/Pd) bilayer are 2.18×1019 m-2 (1.81×1019 m-2 ) for spin mixing conductance, 6.0 nm (7.6 nm) for spin diffusion length and 0.013 (0.004) for spin Hall angle. In particular, two models were used to calculate spin diffusion length and spin Hall angle, with and without spin current back flow. It is found that the value of spin Hall angle is sensitive to the model modification while the mixing conductance is not. This finding provides some insight to resolve the controversy of experimental results of spin Hall angle from different groups. Another finding is that the spin current densities of LSMO/Pt and LSMO/Pd are very close (~0.70 nJ/m2 at 40 mW) and comparable to that of Py/Pt, which makes LSMO a potential FM spin pump.

主题分类 基礎與應用科學 > 物理
理學院 > 物理學系
参考文献
  1. 1 P. A. M. Dirac, P R Soc Lond a-Conta 117, 610 (1928).
    連結:
  2. 2 P. A. M. Dirac, P R Soc Lond a-Conta 118, 351 (1928).
    連結:
  3. 4 A. Hirohata and K. Takanashi, J Phys D Appl Phys 47, 193001 (2014).
    連結:
  4. 5 G. A. Prinz, Science 282, 1660 (1998).
    連結:
  5. 7 K. L. Wang, Z. M. Zhao, and A. Khitun, Thin Solid Films 517, 184 (2008).
    連結:
  6. 13 M. R. Bennett and J. G. Wright, Phys Lett A A 38, 419(1972).
    連結:
  7. 14 S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
    連結:
  8. 23 J. G. Zhu, P Ieee 96, 1786 (2008).
    連結:
  9. 25 J. A. Katine and E. E. Fullerton, J Magn Magn Mater 320, 1217 (2008).
    連結:
  10. 27 T. Kawahara, K. Ito, R. Takemura, and H. Ohno,
    連結:
  11. Microelectron Reliab 52, 613 (2012).
    連結:
  12. 31 J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
    連結:
  13. 33 J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
    連結:
  14. 34 Y. Niimi and Y. Otani, Rep Prog Phys 78, 124501 (2015).
    連結:
  15. 35 S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
    連結:
  16. 36 E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
    連結:
  17. 42 K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).
    連結:
  18. 45 W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
    連結:
  19. 47 J. Kanamori, J Phys Chem Solids 10, 87 (1959).
    連結:
  20. 49 P. W. Anderson and H. Hasegawa, Physical Review 100, 675 (1955).
    連結:
  21. 50 P. G. Degennes, Physical Review 118, 141 (1960).
    連結:
  22. 53 D. J. Singh and W. E. Pickett, Phys. Rev. B 57, 88 (1998).
    連結:
  23. 54 H. Fujishiro, T. Fukase, and M. Ikebe, J Phys Soc Jpn 67, 2582 (1998).
    連結:
  24. 56 Y. Ji, A. Hoffmann, J. S. Jiang, J. E. Pearson, and S. D. Bader, J Phys D Appl Phys 40, 1280 (2007).
    連結:
  25. 58 L. Vila, T. Kimura, and Y. Otani, Phys. Rev. Lett. 99, 226604 (2007).
    連結:
  26. 63 A. Azevedo, L. H. Vilela-Leao, R. L. Rodriguez-Suarez, A. F. L. Santos, and S. M. Rezende, Phys. Rev. B 83, 144402 (2011).
    連結:
  27. 65 F. D. Czeschka, et al., Phys. Rev. Lett. 107, 046601(2011).
    連結:
  28. 66 Z. Feng, et al., Phys. Rev. B 85, 214423 (2012).
    連結:
  29. 71 G. Y. Luo, C. R. Chang, and J. G. Lin, J. Appl. Phys. 115, 17C508 (2014).
    連結:
  30. 75 Q. F. Sun and X. C. Xie, Phys. Rev. B 72, 245305 (2005).
    連結:
  31. 84 G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
    連結:
  32. 85 T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
    連結:
  33. 87 L. Berger, Phys Rev B-Solid St 2, 4559 (1970).
    連結:
  34. 88 J. Smit, Physica 24, 39 (1958).
    連結:
  35. 92 S. E. Barnes, Adv Phys 30, 801 (1981).
    連結:
  36. 93 B. Heinrich and J. F. Cochran, Adv Phys 42, 523 (1993).
    連結:
  37. 94 T. G. Phillips and Rosenber.Mh, Rep Prog Phys 29, 285 (1966).
    連結:
  38. 95 A. Bland and B. Heinrich, Ultrathin magnetic structures (Springer, Berlin ; New York, 1994).
    連結:
  39. 97 J. P. Nibarger, R. Lopusnik, Z. Celinski, and T. J. Silva, Appl. Phys. Lett. 83, 93 (2003).
    連結:
  40. 100 S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40, 580 (2001).
    連結:
  41. 101 M. Farle, Rep Prog Phys 61, 755 (1998).
    連結:
  42. 102 J. Lindner and K. Baberschke, J Phys-Condens Mat 15, S465 (2003).
    連結:
  43. 103 S. Mizukami, Y. Ando, and T. Miyazaki, Jpn J Appl Phys 1 40, 580 (2001).
    連結:
  44. 104 D. D. Awschalom and M. E. Flatte, Nat Phys 3, 153 (2007).
    連結:
  45. 105 Y. Kajiwara, et al., Nature 464, 262 (2010).
    連結:
  46. 106 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B 66, 224403 (2002).
    連結:
  47. 107 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
    連結:
  48. 109 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
    連結:
  49. 110 A. Takeuchi and G. Tatara, J Phys Soc Jpn 77, 074401 (2008).
    連結:
  50. 111 G. Woltersdorf, O. Mosendz, B. Heinrich, and C. H. Back, Phys. Rev. Lett. 99, 246603 (2007).
    連結:
  51. 115 P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S. W. Cheong, J. D. Jorgensen, and D. N. Argyriou, Phys. Rev. B 56, 8265 (1997).
    連結:
  52. 119 H. Boschker, et al., J Phys D Appl Phys 44, 205001 (2011).
    連結:
  53. 121 D. S. Sheny, D. Philip, and J. Mathew, Spectrochim Acta A 91, 35 (2012).
    連結:
  54. 122 H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).
    連結:
  55. 124 G. Y. Luo, C. R. Chang, and J. G. Lin, Ieee T Magn 49, 4371 (2013).
    連結:
  56. 125 Y. C. Liang and Y. C. Liang, J Cryst Growth 304, 275 (2007).
    連結:
  57. References
  58. 3 Coucoula.A, Proc Electron Compon, 549 (1970).
  59. 6 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
  60. 8 C. H. Marrows, L. C. Chapon, and S. Langridge, Mater Today 12, 70 (2009).
  61. 9 C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater. 6, 813 (2007).
  62. 10 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
  63. 11 M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  64. 12 A. Isin and R. V. Coleman, Physical Review 142, 37 (1966).
  65. 15 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  66. 16 U. Hartmann and E. Coehoorn, Magnetic multilayers and giant magnetoresistance : fundamentals and industrial applications (Springer, Berlin ; New York, (2000).
  67. 17 A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. H. Sun, and E. E. Fullerton, J Phys D Appl Phys 35, R157 (2002).
  68. 18 S. S. P. Parkin, et al., J. Appl. Phys. 85, 5828 (1999).
  69. 19 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  70. 20 Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 90, 212507 (2007).
  71. 21 J. G. J. Zhu and C. D. Park, Mater Today 9, 36 (2006).
  72. 22 K. Kim, VLSI Technology, Systems and Applications, 5(2008).
  73. 24 J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Nature communications 2, 553 (2011).
  74. 26 K. Ando, S. Fujita, J. Ito, S. Yuasa, Y. Suzuki, Y. Nakatani, T. Miyazaki, and H. Yoda, J. Appl. Phys. 115, 172607 (2014).
  75. 28 S. A. Wolf, J. W. Lu, M. R. Stan, E. Chen, and D. M. Treger, P Ieee 98, 2155 (2010).
  76. 29 F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001).
  77. 30 M. I. Dyakonov and V. I. Perel, Jetp 13, 467 (1971).
  78. 32 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
  79. 37 L. Q. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
  80. 38 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
  81. 39 J. G. B. a. K. A. Muller., Z. Phy. B 64, 189 (1986).
  82. 40 R. M. Kusters, J. Singleton, D. A. Keen, R. Mcgreevy, and W. Hayes, Physica B 155, 362 (1989).
  83. 41 R. Vonhelmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
  84. 43 S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
  85. 44 A. M. Haghiri-Gosnet and J. P. Renard, J Phys D Appl Phys 36, R127 (2003).
  86. 46 H. A. Jahn and E. Teller, Proc R Soc Lon Ser-A 161, 220 (1937).
  87. 48 C. Zener, Physical Review 82, 403 (1951).
  88. 51 S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic, Phys. Rev. Lett. 76, 960 (1996).
  89. 52 M. Zhuang, W. Y. Zhang, and N. B. Ming, Phys. Rev. B 56, 14547 (1997).
  90. 55 T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007).
  91. 57 T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, Nat. Mater. 7, 125 (2008).
  92. 59 K. Ando, et al., J. Appl. Phys. 109, 103913 (2011).
  93. 60 H. Nakayama, K. Ando, K. Harii, T. Yoshino, R. Takahashi, Y. Kajiwara, K. Uchida, Y. Fujikawa, and E. Saitoh, Phys. Rev. B 85, 144408 (2012).
  94. 61 O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010).
  95. 62 O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214403 (2010).
  96. 64 A. Ganguly, K. Kondou, H. Sukegawa, S. Mitani, S. Kasai, Y. Niimi, Y. Otani, and A. Barman, Appl. Phys. Lett. 104, 072405 (2014).
  97. 67 M. V. Costache, M. Sladkov, S. M. Watts, C. H. van der Wal, and B. J. van Wees, Phys. Rev. Lett. 97, 216603 (2006).
  98. 68 W. Zhang, V. Vlaminck, J. E. Pearson, R. Divan, S. D. Bader, and A. Hoffmann, Appl. Phys. Lett. 103, 242414 (2013).
  99. 69 L. H. Bai, P. Hyde, Y. S. Gui, C. M. Hu, V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 111, 217602 (2013).
  100. 70 G. Y. Luo, M. Y. Song, H. Y. Hung, Y. C. Chiu, J. Kwo, S. F. Lee, C. R. Chang, and J. G. Lin, Ieee. T. Magn. 48, 3958 (2012).
  101. 72 S. M. Haidar, Y. Shiomi, J. Lustikova, and E. Saitoh, Appl. Phys. Lett. 107, 152408 (2015).
  102. 73 J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392, 794 (1998).
  103. 74 J. R. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96, 076604 (2006).
  104. 76 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 12660 (2004).
  105. 77 T. Matsuyama, C. M. Hu, D. Grundler, G. Meier, and U. Merkt, Phys. Rev. B 65, 155322 (2002).
  106. 78 E. I. Rashba, Sov Phys-Sol State 2, 1109 (1960).
  107. 79 Y. A. Bychkov and E. I. Rashba, J Phys C Solid State 17, 6039 (1984).
  108. 80 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  109. 81 F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).
  110. 82 J. M. Luttinger and R. Karplus, Physical Review 94, 782 (1954).
  111. 83 J. W. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tesanovic, Phys. Rev. Lett. 83, 3737 (1999).
  112. 86 T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Phys. Rev. B 77, 165117 (2008).
  113. 89 S. Maekawa, S. O. Valenzuela, E. Saitoh, T. Kimura, and Oxford University Press., Spin current.
  114. 90 G. J. H. E., Nature 158, 670 (1946).
  115. 91 C. Kittel, Physical Review 71, 270 (1947).
  116. 96 P. E. Wigen, Physical Review 133, A1557 (1964).
  117. 98 J. O. Artman, Physical Review 105, 74 (1957).
  118. 99 L. Baselgia, M. Warden, F. Waldner, S. L. Hutton, J. E. Drumheller, Y. Q. He, P. E. Wigen, and M. Marysko, Phys. Rev. B 38, 2237 (1988).
  119. 108 C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Phys. Rev. Lett. 100, 047002 (2008).
  120. 112 O. Mosendz, G. Woltersdorf, B. Kardasz, B. Heinrich, and C. H. Back, Phys. Rev. B 79, 224412 (2009).
  121. 113 K. Ando, Y. Kajiwara, S. Takahashi, S. Maekawa, K. Takemoto, M. Takatsu, and E. Saitoh, Phys. Rev. B 78, 014403 (2008).
  122. 114 H. Nakayama, K. Ando, K. Harii, Y. Kajiwara, T. Yoshino, K. Uchida, and E. Saitoh, Ieee. T. Magn. 46, 2202 (2010).
  123. 116 G. H. Jonker and J. H. Vansanten, Physica 16, 337 (1950).
  124. 117 N. Farag, M. Bobeth, W. Pompe, A. E. Romanov, and J. S. Speck, J. Appl. Phys. 97, 113516 (2005).
  125. 118 C. S. S. R. Kumar and SpringerLink (Online service), (2014).
  126. 120 S. F. Du, Y. X. Lu, S. K. Malladi, Q. Xu, and R. Steinberger-Wilckens, J Mater Chem A 2, 692 (2014).
  127. 123 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
  128. 126 O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214493 (2010).
  129. 127 R. Takahashi, R. Iguchi, K. Ando, H. Nakayama, T. Yoshino, and E. Saitoh, J. Appl. Phys. 111, 07C307 (2012).
  130. 128 M. Belmeguenai, S. Mercone, C. Adamo, L. Mechin, C. Fur, P. Monod, P. Moch, and D. G. Schlom, Phys. Rev. B 81, 054410 (2010).
  131. 129 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).
  132. 130 M. Haertinger, C. H. Back, J. Lotze, M. Weiler, S. Geprags, H. Huebl, S. T. B. Goennenwein, and G. Woltersdorf, Phys. Rev. B 92, 054437 (2015).
  133. 131 C. H. Du, H. L. Wang, P. C. Hammel, and F. Y. Yang, J. Appl. Phys. 117, 172603 (2015).
  134. 131 C. Hahn, G. de Loubens, O. Klein, M. Kiret, V. V. Naletov,and J. Ben Youssef, Phys. Rev. B 87, 174417 (2013).