题名

利用電漿光譜技術之手機式氣體感測器之建立

并列篇名

Development of Smartphone-Based Gas Sensor Using Plasma Emission Spectroscopy

DOI

10.6342/NTU201602487

作者

葉柏緯

关键词

微電漿 ; 可攜式 ; 氣體檢測 ; 電漿光譜 ; microplasma ; portable ; gas sensor ; plasma emission spectroscopy

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

徐振哲

内容语文

繁體中文

中文摘要

本實驗為利用一低成本可撓式常壓微電漿裝置(Microplasma Generation Device, MGD)進行氣體檢測之實驗研究,該微電漿裝置主要由雙層銅箔與玻璃纖維介電質組成,並以碳粉轉印技術與濕蝕刻進行電極方面的設計,相較傳統電漿裝置之製程方法具有低成本,電極設計具有彈性,且可大量製作之優點。此外本實驗藉由浮動電極之設計,增強電漿放光強度,並探討不同浮動電極參數之改變對於電漿特性之影響。 本實驗氣體檢測方法為利用待測氣體與電漿反應產生電漿放光後,利用光譜儀分光產生電漿光譜,由於不同氣體會有不同特徵光,藉此進行氣體定量與定性上之分析。而實驗主要分成兩部分,第一部分為在氬氣氣氛中進行有機物氣體的檢測:利用在浮動電極設計最適化後之微電漿裝置(MGD) 進行有機物之分析,定性上可以分辨有機物中是否含有氮之元素;定量上可分析具有定量潛力且極限濃度約略在25 ppm之乙醇。第二部分為完全可攜式氣體檢測裝置:本實驗將電漿電源供應器、微電漿裝置(MGD),以及光譜儀整體裝置微型化,並且利用手機作為分析平台,欲展示一具有完全可攜式潛力之氣體檢測裝置。本部分實驗中吾人探討可攜式電漿電源供應器設計和電漿電源供應器與微電漿裝置電容匹配之效應,最後使用此裝置展示常見氣體與易揮發性有機氣體之定性分析,並展示定量有機物(丙酮)之潛力。

英文摘要

A low-cost and flexible atmospheric-pressure microplasma generation device (MGD), which is used to detect gas, is presented. This MGD is made of double-side copper clad laminate (CCL) and dielectric fiberglass; the MGD electrode patterns are defined using the toner-transfer method and wet etching. Comparing to traditional manufacture of plasma device, this work demonstrates a less-cost, more customized method for electrode patterning and the capability of mass production. Furthermore, using this MGD with a specially-designed electrode arrangement (floating electrode), the optical intensity of plasma is enhanced. We also discuss the influence of different parameters of floating electrode on plasma properties. When plasma reacts with the analyte, the vapor is excited and emits light. Then, we obtain plasma optical emission from spectrometer. Each molecule emits the light with its specific wavelength; therefore, we can utilize this unique information to qualify and/or quantify contamination in the sample. There are two parts in this thesis. In the first part, we use optimal parameters of floationg electrode of MGD to analyze organic compounds by plasma emission spectroscopy in Argon. This system can identify organic compounds with CN (388 nm) bond and detect ethanol with detection limit at 25 ppm. A nearly linear calibration curve can be obtained for ethanol. The second part of this study is focused on developing a real portable gas sensor. We miniaturize the whole system, including the power supply, plasma device and spectrometer. Moreover, we use the smartphone as a platform for analysis. In this part, there is a discussion of matching between portable power supply and MGD. Finally, we identify normal gas and organic gas and the possibility of quantitative analysis.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. 1. Radmilovic-Radjenovic, M.; Lee, J. K.; Iza, F.; Park, G. Y., Particle-in-cell simulation of gas breakdown in microgaps. J. Phys. D-Appl. Phys. 2005, 38, 950-954.
    連結:
  2. 2. Fridman, A.; Chirokov, A.; Gutsol, A., Non-thermal atmospheric pressure discharges. J. Phys. D-Appl. Phys. 2005, 38, R1-R24.
    連結:
  3. 3. Heeren, T.; Ueno, T.; Wang, D.; Namihira, T.; Katsuki, S.; Akiyama, H., Novel dual Marx generator for microplasma applications. IEEE Trans. Plasma Sci. 2005, 33, 1205-1209.
    連結:
  4. 4. Schoenbach, K. H.; ElHabachi, A.; Shi, W. H.; Ciocca, M., High-pressure hollow cathode discharges. Plasma Sources Sci. Technol. 1997, 6, 468-477.
    連結:
  5. 5. Raja, L. L.; Varghese, P. L.; Wilson, D. E., Modeling of the electrogun metal vapor plasma discharge. Journal of Thermophysics and Heat Transfer 1997, 11, 353-360.
    連結:
  6. 6. Staack, D.; Farouk, B.; Gutsol, A. F.; Fridman, A. A., Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci. Technol. 2006, 15, 818-827.
    連結:
  7. 7. Bruggeman, P.; Liu, J. J.; Degroote, J.; Kong, M. G.; Vierendeels, J.; Leys, C., Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J. Phys. D-Appl. Phys. 2008, 41, 11.
    連結:
  8. 8. He, Q.; Zhu, Z. L.; Hu, S. H.; Zheng, H. T.; Jin, L. L., Elemental Determination of Microsamples by Liquid Film Dielectric Barrier Discharge Atomic Emission Spectrometry. Anal. Chem. 2012, 84, 4179-4184.
    連結:
  9. 9. Schoenbach, K. H.; Verhappen, R.; Tessnow, T.; Peterkin, F. E.; Byszewski, W. W., Microhollow cathode discharges. Appl. Phys. Lett. 1996, 68, 13-15.
    連結:
  10. 10. Boeuf, J. P.; Pitchford, L. C.; Schoenbach, K. H., Predicted properties of microhollow cathode discharges in xenon. Appl. Phys. Lett. 2005, 86, 3.
    連結:
  11. 11. Braman, R. S.; Dynako, A., DIRECT CURRENT DISCHARGE SPECTRAL EMISSION-TYPE DETECTOR. Anal. Chem. 1968, 40, 95-&.
    連結:
  12. 12. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci., 26, 1685-1694, 1998; ://WOS:000078329600012 (accessed Dec).
    連結:
  13. 13. Wal, R. L. V.; Fujiyama-Novak, J. H.; Gaddam, C. K.; Das, D.; Hariharan, A.; Ward, B., Atmospheric Microplasma Jet: Spectroscopic Database Development and Analytical Results. Appl. Spectrosc. 2011, 65, 1073-1082.
    連結:
  14. 14. Sismanoglu, B. N.; Amorim, J.; Souza-Correa, J. A.; Oliveira, C.; Gomes, M. P., Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet. Spectroc. Acta Pt. B-Atom. Spectr. 2009, 64, 1287-1293.
    連結:
  15. 15. Eden, J. G.; Park, S. J., Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications. Plasma Phys. Control. Fusion 2005, 47, B83-B92.
    連結:
  16. 16. Yang, Y. J.; Hsu, C. C., A Flexible Paper-Based Microdischarge Array Device for Maskless Patterning on Nonflat Surfaces. J. Microelectromech. Syst. 2013, 22, 256-258.
    連結:
  17. 17. Kogelschatz, U., Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1-46.
    連結:
  18. 18. Kriegseis, J.; Moeller, B.; Grundmann, S.; Tropea, C., Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. Journal of Electrostatics 2011, 69, 302-312.
    連結:
  19. 19. Karanassios, V., Microplasmas for chemical analysis: analytical tools or research toys? Spectroc. Acta Pt. B-Atom. Spectr. 2004, 59, 909-928.
    連結:
  20. 20. Chirokov, A.; Gutsol, A.; Fridman, A., Atmospheric pressure plasma of dielectric barrier discharges. Pure Appl. Chem. 2005, 77, 487-495.
    連結:
  21. 22. Tachibana, K., Current status of microplasma research. IEEJ Trans. Electr. Electron. Eng. 2006, 1, 145-155.
    連結:
  22. 23. Iza, F.; Kim, G. J.; Lee, S. M.; Lee, J. K.; Walsh, J. L.; Zhang, Y. T.; Kong, M. G., Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Process. Polym. 2008, 5, 322-344.
    連結:
  23. 24. Wilson, C. G.; Gianchandani, Y. B., Spectral detection of metal contaminants in water using an on-chip microglow discharge. IEEE Trans. Electron Devices 2002, 49, 2317-2322.
    連結:
  24. 25. Eijkel, J. C. T.; Stoeri, H.; Manz, A., An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector. J. Anal. At. Spectrom. 2000, 15, 297-300.
    連結:
  25. 26. Nunez, C. M.; Ramsey, G. H.; Ponder, W. H.; Abbott, J. H.; Hamel, L. E.; Kariher, P. H., Corona destruction - An innovative control technology for vocs and air toxics. J. Air Waste Manage. Assoc. 1993, 43, 242-247.
    連結:
  26. 27. Zhang, Y.; Li, D. A.; Wang, H. C., Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage. Plasma Sci. Technol. 2010, 12, 702-707.
    連結:
  27. 28. Karuppiah, J.; Reddy, E. L.; Reddy, P. M. K.; Ramaraju, B.; Karvembu, R.; Subrahmanyam, C., Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J. Hazard. Mater. 2012, 237, 283-289.
    連結:
  28. 29. Liang, W. J.; Ma, L.; Liu, H.; Li, J., Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere 2013, 92, 1390-1395.
    連結:
  29. 31. Payne, B. P.; Nishioka, N. S.; Mikic, B. B.; Venugopalan, V., Comparison of pulsed CO2 laser ablation at 10.6 mu m and 9.5 mu m. Lasers Surg. Med. 1998, 23, 1-6.
    連結:
  30. 32. Li, X. S.; Zhu, A. M.; Wang, K. J.; Yong, X.; Song, Z. M., Methane conversion to C-2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques. Catal. Today 2004, 98, 617-624.
    連結:
  31. 34. Zhang, X. H.; Huang, J.; Liu, X. D.; Peng, L.; Guo, L. H.; Lv, G. H.; Chen, W.; Feng, K. C.; Yang, S. Z., Treatment of Streptococcus mutans bacteria by a plasma needle. J. Appl. Phys. 2009, 105, 6.
    連結:
  32. 35. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-pen" nanolithography. Science 1999, 283, 661-663.
    連結:
  33. 36. Liao, Y. C.; Kao, Z. K., Direct Writing Patterns for Electroless Plated Copper Thin Film on Plastic Substrates. ACS Appl. Mater. Interfaces 2012, 4, 5109-5113.
    連結:
  34. 37. Yang, Y. J.; Kao, P. K.; Hsu, C. C., A Low-Cost and Flexible Microplasma Generation Device to Create Hydrophobic/Hydrophilic Contrast on Nonflat Surfaces. J. Microelectromech. Syst. 2015, 24, 1678-1680.
    連結:
  35. 38. Leclercq, A.; Nonell, A.; Torro, J. L. T.; Bresson, C.; Vio, L.; Vercouter, T.; Chartier, F., Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: A tutorial review. Part I. Theoretical considerations. Anal. Chim. Acta 2015, 885, 33-56.
    連結:
  36. 39. Lekkas, T.; Kolokythas, G.; Nikolaou, A.; Kostopoulou, M.; Kotrikla, A.; Gatidou, G.; Thomaidis, N. S.; Golfinopoulos, S.; Makri, C.; Babos, D.; Vagi, M.; Stasinakis, A.; Petsas, A.; Lekkas, D. F., Evaluation of the pollution of the surface waters of Greece from the priority compounds of List II, 76/464/EEC Directive, and other toxic compounds. Environ. Int. 2004, 30, 995-1007.
    連結:
  37. 40. Linge, K. L., Trace Element Determination by ICP-AES and ICP-MS: Developments and Applications Reported During 2006 and 2007. Geostand. Geoanal. Res. 2008, 32, 453-468.
    連結:
  38. 41. Pacenti, M.; Lofrumento, C.; Dugheri, S.; Zoppi, A.; Borsi, I.; Speranza, A.; Boccalon, P.; Arcangeli, G.; Antoniucci, A.; Castellucci, E. M.; Cupelli, V., Physicochemical characterization of exhaust particulates from gasoline and diesel engines by solid-phase micro extraction sampling and combined raman microspectroscopic/fast gas-chromotography mass spectrometry analysis. Eur. J. Inflamm. 2009, 7, 25-37.
    連結:
  39. 42. Johyama, Y.; Yokota, K.; Fujiki, Y.; Takeshita, T.; Morimoto, K., Determination of methyltetrahydrophthalic anhydride in air using gas chromatography with electron-capture detection. Ind. Health 1999, 37, 364-368.
    連結:
  40. 43. Wang, X. N.; Sun, X. L.; Hu, P. A.; Zhang, J.; Wang, L. F.; Feng, W.; Lei, S. B.; Yang, B.; Cao, W. W., Colorimetric Sensor Based on Self-Assembled Polydiacetylene/Graphene-Stacked Composite Film for Vapor-Phase Volatile Organic Compounds. Adv. Funct. Mater. 2013, 23, 6044-6050.
    連結:
  41. 44. Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S., Colorimetric sensor Arrays for volatile organic compounds. Anal. Chem. 2006, 78, 3591-3600.
    連結:
  42. 45. Suslick, K. S.; Rakow, N. A.; Sen, A., Colorimetric sensor arrays for molecular recognition. Tetrahedron 2004, 60, 11133-11138.
    連結:
  43. 46. Comini, E., Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 2006, 568, 28-40.
    連結:
  44. 47. Miller, D. R.; Akbar, S. A.; Morris, P. A., Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuator B-Chem. 2014, 204, 250-272.
    連結:
  45. 48. Guadarrama, A.; Rodriguez-Mendez, M. L.; de Saja, J. A., Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles. Anal. Chim. Acta 2002, 455, 41-47.
    連結:
  46. 49. Liu, X. H.; Zhang, J.; Wang, L. W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R., 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 2011, 21, 349-356.
    連結:
  47. 50. Li, X. W.; Wang, C.; Guo, H.; Sun, P.; Liu, F. M.; Liang, X. S.; Lu, G. Y., Double-Shell Architectures of ZnFe2O4 Nanosheets on ZnO Hollow Spheres for High-Performance Gas Sensors. ACS Appl. Mater. Interfaces 2015, 7, 17811-17818.
    連結:
  48. 51. Elosua, C.; Matias, I. R.; Bariain, C.; Arregui, F. J., Volatile organic compound optical fiber sensors: A review. Sensors 2006, 6, 1440-1465.
    連結:
  49. 52. Knighton, W. B.; Herndon, S. C.; Franklin, J. F.; Wood, E. C.; Wormhoudt, J.; Brooks, W.; Fortner, E. C.; Allen, D. T., Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy. Ind. Eng. Chem. Res. 2012, 51, 12674-12684.
    連結:
  50. 53. Schafer, K.; Haus, R.; Heland, J.; Haak, A measurements of atmospheric trace gases by emission and absorption-spectroscopy with ftir. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1995, 99, 405-411.
    連結:
  51. 54. Ihdene, Z.; Mekki, A.; Mettai, B.; Mahmoud, R.; Hamada, B.; Chehimi, M. M., Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films. Sens. Actuator B-Chem. 2014, 203, 647-654.
    連結:
  52. 55. Sanchez, J. B.; Berger, F.; Fromm, M.; Nadal, M. H., A selective gas detection micro-device for monitoring the volatile organic compounds pollution. Sens. Actuator B-Chem. 2006, 119, 227-233.
    連結:
  53. 56. Zhong, Q.; Steinecker, W. H.; Zellers, E. T., Characterization of a high-performance portable GC with a chemiresistor array detector. Analyst 2009, 134, 283-293.
    連結:
  54. 57. James, D.; Scott, S. M.; Ali, Z.; O'Hare, W. T., Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1-17.
    連結:
  55. 58. Narayanan, S.; Rice, G.; Agah, M., A micro-discharge photoionization detector for micro-gas chromatography. Microchim. Acta 2014, 181, 493-499.
    連結:
  56. 59. Wentworth, W. E.; Cai, H. M.; Stearns, S., Pulsed discharge helium ionization detector universal detector for inorganic and organic-compounds at the low picogram level. J. Chromatogr. A 1994, 688, 135-152.
    連結:
  57. 60. Cai, H. M.; Stearns, S. D., Pulsed discharge helium ionization detector with multiple combined bias/collecting electrodes for gas chromatography. J. Chromatogr. A 2013, 1284, 163-173.
    連結:
  58. 61. Eijkel, J. C. T.; Stoeri, H.; Manz, A., A molecular emission detector on a chip employing a direct current microplasma. Anal. Chem. 1999, 71, 2600-2606.
    連結:
  59. 62. Mitra, B.; Gianchandani, Y. B., The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two- and three-electrode microstructures. IEEE Sens. J. 2008, 8, 1445-1454.
    連結:
  60. 63. Vander Wal, R. L.; Gaddam, C. K.; Kulis, M. J., An Investigation of Micro-Hollow Cathode Glow Discharge Generated Optical Emission Spectroscopy for Hydrocarbon Detection and Differentiation. Appl. Spectrosc. 2014, 68, 649-656.
    連結:
  61. 64. Meng, F. Y.; Li, X. M.; Duan, Y. X., Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement. Sci Rep 2014, 4, 7.
    連結:
  62. 65. Cai, Y.; Li, S. H.; Dou, S.; Yu, Y. L.; Wang, J. H., Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry. Anal. Chem. 2015, 87, 1366-1372.
    連結:
  63. 66. Han, B. J.; Jiang, X. M.; Hou, X. D.; Zheng, C. B., Dielectric Barrier Discharge Carbon Atomic Emission Spectrometer: Universal GC Detector for Volatile Carbon-Containing Compounds. Anal. Chem. 2014, 86, 936-942.
    連結:
  64. 67. Li, W.; Zheng, C. B.; Fan, G. Y.; Tang, L.; Xu, K. L.; Lv, Y.; Hou, X. D., Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons. Anal. Chem. 2011, 83, 5050-5055.
    連結:
  65. 68. Wu, Z. C.; Chen, M. L.; Li, P.; Zhu, Q. Q.; Wang, J. H., Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia. Analyst 2011, 136, 2552-2557.
    連結:
  66. 69. Liao, H. C.; Hsu, C. P.; Wu, M. C.; Lu, C. F.; Su, W. F., Conjugated Polymer/Nanoparticles Nanocomposites for High Efficient and Real-Time Volatile Organic Compounds Sensors. Anal. Chem. 2013, 85, 9305-9311.
    連結:
  67. 70. Meng, F. Y.; Yuan, X.; Li, X. M.; Liu, Y.; Duan, Y. X., Microplasma-Based Detectors for Gas Chromatography: Current Status and Future Trends. Appl. Spectrosc. Rev. 2014, 49, 533-549.
    連結:
  68. 71. Luo, D. B.; Duan, Y. X., Microplasmas for analytical applications of lab-on-a-chip. Trac-Trends Anal. Chem. 2012, 39, 254-266.
    連結:
  69. 72. Yang, T.; Gao, D. X.; Yu, Y. L.; Chen, M. L.; Wang, J. H., Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath. Talanta 2016, 146, 603-608.
    連結:
  70. 73. Luo, D. B.; Duan, Y. X.; He, Y.; Gao, B., A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit. Sci Rep 2014, 4, 9.
    連結:
  71. 75. Wei, Q. S.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S. J.; Caire, R.; Tseng, D.; Ozcan, A., Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone. ACS Nano 2014, 8, 1121-1129.
    連結:
  72. 76. Contreras-Naranjo, J. C.; Wei, Q. S.; Ozcan, A., Mobile Phone-Based Microscopy, Sensing, and Diagnostics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 14.
    連結:
  73. 77. Yang, K.; Peretz-Soroka, H.; Liu, Y.; Lin, F., Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip 2016, 16, 943-958.
    連結:
  74. 78. Roda, A.; Michelini, E.; Cevenini, L.; Calabria, D.; Calabretta, M. M.; Simoni, P., Integrating Biochemiluminescence Detection on Smartphones: Mobile Chemistry Platform for Point-of-Need Analysis. Anal. Chem. 2014, 86, 7299-7304.
    連結:
  75. 79. Chang, B. Y., Smartphone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements. Bull. Korean Chem. Soc. 2012, 33, 549-552.
    連結:
  76. 80. Breslauer, D. N.; Maamari, R. N.; Switz, N. A.; Lam, W. A.; Fletcher, D. A., Mobile Phone Based Clinical Microscopy for Global Health Applications. PLoS One 2009, 4, 7.
    連結:
  77. 82. Wei, Q. S.; Qi, H. F.; Luo, W.; Tseng, D.; Ki, S. J.; Wan, Z.; Gorocs, Z.; Bentolila, L. A.; Wu, T. T.; Sun, R.; Ozcan, A., Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7, 9147-9155.
    連結:
  78. 83. Zhu, H. Y.; Sikora, U.; Ozcan, A., Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 2012, 137, 2541-2544.
    連結:
  79. 84. Oncescu, V.; O'Dell, D.; Erickson, D., Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 2013, 13, 3232-3238.
    連結:
  80. 85. Oncescu, V.; Mancuso, M.; Erickson, D., Cholesterol testing on a smartphone. Lab Chip 2014, 14, 759-763.
    連結:
  81. 86. Lee, S.; Oncescu, V.; Mancuso, M.; Mehta, S.; Erickson, D., A smartphone platform for the quantification of vitamin D levels. Lab Chip 2014, 14, 1437-1442.
    連結:
  82. 87. Mudanyali, O.; Dimitrov, S.; Sikora, U.; Padmanabhan, S.; Navruz, I.; Ozcan, A., Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 2012, 12, 2678-2686.
    連結:
  83. 88. Lopez-Ruiz, N.; Curto, V. F.; Erenas, M. M.; Benito-Lopez, F.; Diamond, D.; Palma, A. J.; Capitan-Vallvey, L. F., Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Anal. Chem. 2014, 86, 9554-9562.
    連結:
  84. 89. Chen, G. H.; Chen, W. Y.; Yen, Y. C.; Wang, C. W.; Chang, H. T.; Chen, C. F., Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Anal. Chem. 2014, 86, 6843-6849.
    連結:
  85. 90. Jung, Y.; Kim, J.; Awofeso, O.; Kim, H.; Regnier, F.; Bae, E., Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Optics 2015, 54, 9183-9189.
    連結:
  86. 91. You, D. J.; Park, T. S.; Yoon, J. Y., Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens. Bioelectron. 2013, 40, 180-185.
    連結:
  87. 92. Smith, Z. J.; Chu, K. Q.; Espenson, A. R.; Rahimzadeh, M.; Gryshuk, A.; Molinaro, M.; Dwyre, D. M.; Lane, S.; Matthews, D.; Wachsmann-Hogiu, S., Cell-Phone-Based Platform for Biomedical Device Development and Education Applications. PLoS One 2011, 6, 11.
    連結:
  88. 94. Hossain, M. A.; Canning, J.; Ast, S.; Cook, K.; Rutledge, P. J.; Jamalipour, A., Combined "dual" absorption and fluorescence smartphone spectrometers. Opt. Lett. 2015, 40, 1737-1740.
    連結:
  89. 95. Yang, C. A.; Shi, K. B.; Edwards, P.; Liu, Z. W., Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Opt. Express 2010, 18, 23529-23534.
    連結:
  90. 97. Wang, X. H.; Gartia, M. R.; Jiang, J.; Chang, T. W.; Qian, J. L.; Liu, Y.; Liu, X. R.; Liu, G. L., Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuator B-Chem. 2015, 209, 677-685.
    連結:
  91. 98. Lillehoj, P. B.; Huang, M. C.; Truong, N.; Ho, C. M., Rapid electrochemical detection on a mobile phone. Lab Chip 2013, 13, 2950-2955.
    連結:
  92. 99. Delaney, J. L.; Doeven, E. H.; Harsant, A. J.; Hogan, C. F., Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal. Chim. Acta 2013, 790, 56-60.
    連結:
  93. 100. Delaney, J. L.; Hogan, C. F.; Tian, J. F.; Shen, W., Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Anal. Chem. 2011, 83, 1300-1306.
    連結:
  94. 101. Shi, C. G.; Shan, X.; Pan, Z. Q.; Xu, J. J.; Lu, C.; Bao, N.; Gu, H. Y., Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform. Anal. Chem. 2012, 84, 3033-3038.
    連結:
  95. 102. Wagner, H. E.; Brandenburg, R.; Kozlov, K. V.; Sonnenfeld, A.; Michel, P.; Behnke, J. F., The barrier discharge: basic properties and applications to surface treatment. Vacuum 2003, 71, 417-436.
    連結:
  96. 103. Nie, Q. Y.; Ren, C. S.; Wang, D. Z.; Zhang, J. L., Simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Appl. Phys. Lett. 2008, 93, 3.
    連結:
  97. 104. Lee, D. S.; Sakai, O.; Tachibana, K., Mode Change Observed on Spatial Distribution of Microplasma Emission in a Microdischarge Cell with a Floating Electrode. Jpn. J. Appl. Phys. 2009, 48, 9.
    連結:
  98. 105. Wang, Z. B.; Chen, G. X.; Wang, Z.; Ge, N.; Li, H. P.; Bao, C. Y., Effect of a floating electrode on an atmospheric-pressure non-thermal arc discharge. J. Appl. Phys. 2011, 110, 5.
    連結:
  99. 106. Lee, D. S.; Tachibana, K.; Yoon, H. J.; Lee, H. J., Enhancement of Optical Emission by Floating Electrodes in a Planar Microdischarge Cell. Jpn. J. Appl. Phys. 2009, 48, 8.
    連結:
  100. 107. Fridman, G.; Peddinghaus, M.; Ayan, H.; Fridman, A.; Balasubramanian, M.; Gutsol, A.; Brooks, A.; Friedman, G., Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 2006, 26, 425-442.
    連結:
  101. 21. Becker, K. H.; Schoenbach, K. H.; Eden, J. G., Microplasmas and applications. J. Phys. D-Appl. Phys. 2006, 39, R55-R70.
  102. 30. Otto, M., Notice on the molecular weight regulation of ozone by means of the weight. Berichte Der Deutschen Chemischen Gesellschaft 1901, 34, 1118-1119.
  103. 33. Park, C. H.; Lee, J. S.; Kim, J. H.; Kim, D. K.; Lee, O. J.; Ju, H. W.; Moon, B. M.; Cho, J. H.; Kim, M. H.; Sun, P. P.; Park, S. J.; Eden, J. G., Wound healing with nonthermal microplasma jets generated in arrays of hourglass microcavity devices. J. Phys. D-Appl. Phys. 2014, 47, 7.
  104. 74. Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J. J.; McLeod, M. W.; Hodgson, T. F.; Dicks, J.; Lewis, A.; Cohen, J.; Baron, R.; Saffell, J. R.; Jones, R. L., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70, 186-203.
  105. 81. Tseng, D.; Mudanyali, O.; Oztoprak, C.; Isikman, S. O.; Sencan, I.; Yaglidere, O.; Ozcan, A., Lensfree microscopy on a cellphone. Lab Chip 2010, 10, 1787-1792.
  106. 93. Gallegos, D.; Long, K. D.; Yu, H. J.; Clark, P. P.; Lin, Y. X.; George, S.; Nath, P.; Cunningham, B. T., Label-free biodetection using a smartphone. Lab Chip 2013, 13, 2124-2132.
  107. 96. Zhang, C. J.; Cheng, G.; Edwards, P.; Zhou, M. D.; Zheng, S. Y.; Liu, Z. W., G-Fresnel smartphone spectrometer. Lab Chip 2016, 16, 246-250.