题名

半導體雷射幫浦摻鈦藍寶石晶體光纖之可調波長雷射研究

并列篇名

The study of laser-diode-pumped tunable Ti:sapphire crystal fiber laser

DOI

10.6342/NTU201602501

作者

楊子德

关键词

摻鈦藍寶石 ; 晶體光纖 ; LHPG長晶 ; 寬頻波長可調雷射 ; Ti:sapphire ; crystal fiber ; LHPG ; broadband tunable laser

期刊名称

臺灣大學光電工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

黃升龍

内容语文

繁體中文

中文摘要

摻鈦藍寶石晶體為常見的寬頻雷射材料,其3-dB頻寬可達180 nm,廣泛地使用於寬頻可調波長雷射、鎖模飛秒雷射;而其中心波長為780 nm之螢光波段落在常見的人體組織之低吸收區域,因此被廣泛使用於生物醫學影像量測技術,如光學同調斷層掃描術(OCT)等。使用LHPG法生長纖心直徑為16 μm且低傳輸損耗(0.075 dB/cm)之玻璃包覆摻鈦藍寶石晶體光纖結構作為雷射之增益介質,可以提供高強度幫浦與訊號光,並克服摻鈦藍寶石晶體本質上的兩大缺點: 低吸收截面積與低螢光生命週期,達到低閥值且高效率之摻鈦藍寶石雷射。長度24 mm之玻璃纖衣摻鈦藍寶石晶體光纖經由端面研磨與拋光處理後,利用介電質電子槍蒸鍍系統於晶體光纖端面鍍製設計之光學薄膜後,做為雷射增益材料。以520-nm綠光半導體雷射作為激發光源,無外加散熱系統下,架設內腔式、外腔式與波長可調式雷射。 在內腔式雷射架構中,以20%輸出耦合鏡下,其斜線效率與閥值功率分別為24.9%與140.5 mW,且在1 W幫浦功率下,最高輸出功率為215 mW,其結果同時展現高效率與低閥值雷射特性。在增益波導效應下,其雷射輸出近乎為基模。在外腔式架構中,在高反射輸出耦合鏡下,雷射閥值為37.3 mW,其結果低於文獻所記載值;在17.8%輸出耦合鏡下,雷射斜線效率與雷射閥值分別為18.6%與123.2 mW。以雙折射濾波器或光柵輸出耦合鏡做為波長可調元件,達到波長可調雷射。在雙折射濾波器做為波長調變元件下,其可調範圍為710- 860 nm,共150 nm寬。而輸出功率大於50 mW之可調區間可達130 nm寬,可提供足夠之功率應用。在光柵輸出耦合鏡架構下,可達到波長連續可調,其範圍為693.4- 876.5 nm,共183.1 nm寬,而3 dB可調頻寬為143 nm。其可調雷射特性充分應用摻鈦藍寶石180 nm之寬頻頻寬,而低閥值且高效率之特性,具有相當大的潛力可取代目前的摻鈦藍寶石雷射。

英文摘要

Ti:sapphire crystal is a widely used material. It has a wide emission spectra with center wavelength located around 780 nm and a 180-nm, 3-dB bandwidth. Due to its broadband emission spectra, there are various applications in wavelength tunable lasers and mode-locked lasers. Since its emission wavelength also sits in the region where there is low tissue absorption, there are also applications in biological imaging technologies, such as optical coherence tomography (OCT). To solve the two drawbacks of Ti:sapphire crystal: low absorption cross section and low fluorescence lifetime, Ti3+:Al2O3 single-cladding crystal fiber was grown using the LHPG method. As the laser gain material, crystal fiber with length of 24 mm was used. The single crystal core diameter was 16 μm and the glass cladding outer diameter was 320 μm. The Ti3+ doped concentration was 0.049 wt.%, with regarding to a 0.075 dB/cm attenuation coefficient, which is the lowest value recorded for Ti:sapphire waveguide structures. After end face grinding and polishing, the crystal fiber was coating with dielectric coating using thin film E-gun deposition system to form the required optical cavity structure. By using a 520-nm LD as the pumping source, intra-cavity and external-cavity lasers were constructed. Due to a gain guiding effect, the output mode is near fundamental mode. Under intra-cavity setup, with a 20% output coupler, the laser efficiency and laser threshold were 24.9% and 140.5 mW, respectively. The maximum output power at 1W pumping was 215 mW, achieving high slope efficiency and low threshold simultaneously. Under external-cavity setup, with high reflectance output coupler, the laser efficiency and laser threshold were 18.6% and 123.2 mW, respectively. With wavelength tuning elements, such as inserting a birefringent filter or using a grating output coupler, tunable laser was achieved. Under birefringent filter setup, the tuning was not continuous. The wavelength tuning range was 710-860 nm, with a 150-nm width. Range of output power exceeding 50 mW was 130 nm, providing sufficient output power for various applications. Under grating setup, continuous wavelength tuning was achieved. Continuous range was 693.4- 876.5 nm, with a 183.1 nm width. With 3-dB tuning bandwidth of 143 nm, the broadband emission properties of Ti:sapphire crystal fiber were demonstrated .

主题分类 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. [1] M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Applied Optics, vol. 49, Issue 16, pp. D30-D61, 2010
    連結:
  2. [3] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, pp. 4630-4632, 2012.
    連結:
  3. [4] P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Optics Letters, vol. 34, pp. 3334-3336, 2009.
    連結:
  4. [8] R. Macfarlane, J. Wong, and M. Sturge, "Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems," Physical Review, vol. 166, pp. 250-258, 1968.
    連結:
  5. [9] R. I. Laming, S. B. Poole, and E. J. Tarbox , “Pump excited-state absorption in erbium-doped fibers”, Optics Letter, vol. 13, no. 12, pp. 1084, 1988.
    連結:
  6. [10] P. Alberts, "Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire," Journal of the Optical Society of America B, vol. 3, pp. 134-139, 1986.
    連結:
  7. [11] R. L. Aggarwal, A. Sanchez, M. Stuppi, R. E. Fahey, A. J. Strauss, W. Rapoport, and C. P. Khattak, "Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3," IEEE Journal of Quantum Electronics, vol. 24, pp. 1003-1008, 1988.
    連結:
  8. [12] J. Pinto, L. Esterowitz, G. Rosenblatt, M. Kokta, and D. Peressini, "Improved Ti:sapphire laser performance with new high figure of merit crystals," IEEE Journal of Quantum Electronics, vol. 30, pp. 2612-2616, 1994.
    連結:
  9. [15] L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electronic Letters,vol. 31, pp. 1151-1152, 1995.
    連結:
  10. [16] A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Optics Letters, vol. 22, pp. 1556-1558, 1997.
    連結:
  11. [17] L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Applied Physics Letters, vol. 85, pp. 5167-1569, 2004.
    連結:
  12. [18] V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, and M. Pollnau, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Applied Physics Letters, vol. 85, pp. 1122-1124, 2004.
    連結:
  13. [20] C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Optics Letters, vol. 31, pp. 3450-3452, 2006.
    連結:
  14. [21] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, pp. 4630-4632, 2012.
    連結:
  15. [22] S. C. Wang, T. I. Yang, D. Y. Jheng, C. Y. Hsu, T. T. Yang, T. S. Ho, and S. L. Huang, “Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber,” Optics Letters, vol. 40, pp. 5594-5597, 2015.
    連結:
  16. [23] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 2345559, 2014.
    連結:
  17. [24] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” Journal of the Optical Society of America B, vol. 3, pp. 134-139 , 1986.
    連結:
  18. [25] S. P. S. Porto and R. S. Krishnan, “Raman effect of Corundum,” The Journal of Chemical Physics, vol. 47, pp. 1009-1012, 1967.
    連結:
  19. [26] W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” Journal of Raman Spectroscopy, vol. 20, pp. 785-788, 1989.
    連結:
  20. [27] J. A. Yeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low loss fibers,” IEEE Journal of Quantum Electronics, QE-14, pp. 347-350, 1978.
    連結:
  21. [28] N. Noguchi, A. Abduriyim, I. Shimizu, N. Kamegata, S. Odakea, and H. Kagi, “Imaging of internal stress around a mineral inclusion in a sapphire crystal: application of micro-Raman and photoluminescence spectroscopy,” Journal of Raman Spectroscopy, vol. 44, pp.147-154, 2013.
    連結:
  22. [29] M. S. Dresselhaus, “Solid State Physics Part II Optical Properties of Solids,” 課堂講義, 1999. [Online]. Available:
    連結:
  23. [33] D. Buttry, “Applications of the QCM to Electrochemistry,” A Series of Advances in Electroanalytical Chemistry, pp. 23-33, 1991.
    連結:
  24. [34] J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for determination of the optical constant n , k and the thickness of weekly absorbing thin films,” Journal of Physics E: Scientific Instruments, vol. 9, pp. 1002- 1004, 1976.
    連結:
  25. [36] RefractiveIndex.Info- Quartz refractive index. [Online]. Available:
    連結:
  26. [37] D. R. Preuss and J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: Theoretical treatment and experimental design,” Applied Optics, vol. 19, no. 5, pp. 702, Mar. 1980.
    連結:
  27. [38] D. Brewster, “On the laws which regulate the Polarisation of light by Reflexion from transparent bodies,” Philosophical Transactions of the Royal Society of London, vol. 105, no. 0, pp. 125- 159, Jan. 1815.
    連結:
  28. [40] Richardson grating, 10RG1800-500-1. [Online]. Available:
    連結:
  29. [41] Y. Okabe et al., “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electronics Letters, vol. 48, no. 4, pp. 201, 2012.
    連結:
  30. [42] S. Trieswasser, “Study of ferroelectric transition of solid-solution single crystals of KNbO3-KTaO3,” Physical Review, vol. 114, no. 1, pp. 63-70, 1959.
    連結:
  31. [43] K.Nakamura, J.Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Applied Physics Letters., vol. 89, pp. 131115-1-3, 2006.
    連結:
  32. [44] G. E. Kugel, M. D. Fontana, and W. Kress, “Lattice dynamics of KTa1-xNbxO3 solid solutions in the cubic phase,” Physical Review’ B, vol. 35, pp. 2, 1987.
    連結:
  33. [45] T. Imai, S. Yagi, S.i Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura. “Fast response varifocal lens using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Applied Optics, Vol. 51, Iss. 10, pp. 1532–1539, 2012.
    連結:
  34. [46] J. Miyazu, T. Imai, S. Toyoda, M.Sasaura, S. Yagi, K. Kato, Y. Sasa,ki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Applied Physics Express, vol.4, no.11, pp. 111501, 2011.
    連結:
  35. [48] NTTAT, KTN deflector module KAC16067, Instruction manual.
    連結:
  36. [49] Acoustic-optic modulator. [Online]. Available:
    連結:
  37. [50] A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Optics Communications, vol. 156, no. 4-6, pp. 264–270, Nov. 1998.
    連結:
  38. [52] J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Optics Letters, vol. 16, no. 8, p. 581, Apr. 1991.
    連結:
  39. [53] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly Tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol 21, pp. 16-23, 2015.
    連結:
  40. [54] Thorlabs, achromatic lens. [Online]. Available:
    連結:
  41. [55] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, pp. 125-133, 1986.
    連結:
  42. [57] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE Journal of the Quantum Electronics, vol. 30, pp. 2612-2616, 1994.
    連結:
  43. [58] T. Danger, K. Petermann, and G. Huber, “Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3,” Applied Physics A:Materials Science & Processing, vol. 57, pp. 309–313, 1993.
    連結:
  44. [59] Y. Chen, S. W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Optics Letters, vol. 32, pp. 1971-1973, 2007.
    連結:
  45. [61] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Optics Letters, vol. 37, no. 22, pp.4630-4632, 2012.
    連結:
  46. [2] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications, ” Reports on Progress in Physics, vol. 66, pp. 239-303, 2003.
  47. [5] Corundum structure. [Online]. Available:
  48. http://en.wikipedia.org/wiki/File:Corundum.GIF [Accessed:27-06-2016]
  49. [6] Al2O3 refractive index. [Online]. Available:
  50. http://refractiveindex.info/?group=CRYSTALS&material=Al2O3 [Accessed:27-06-2016]
  51. [7] K. F. Wall and A. Sanchez, "Titanium sapphire lasers," The Lincoln Laboratory Journal, vol. 3, pp. 447-462, 1990.
  52. [13] R.S. Feigelson, "Growth of fiber crystals," Crystal Growth of Electronic Materials, pp. 127, 1985.
  53. [14] J. Czochralski, "A new method for the measurement of the crystallization rate of metals," Zeitschrift für Physikalische Chemie, vol. 92, pp. 219-221, 1918.
  54. [19] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” Journal of the Optical Society of America B, vol. 21, pp. 1452-1462, 2004.
  55. http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf [Accessed:27-06-2016]
  56. [30] 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 2002.
  57. [31] H. A. Macleod, “Thin film optical filter, third edition,” CRC Press Book, 2001.
  58. [32] JEOL, 電子槍水冷式旋轉坩鍋. [Online]. Available:
  59. http://www.jeol.co.jp/products/detail/BS_JEBG_EBGseries.html [Accessed:27-06-2016]
  60. [35] S. M. Kobtsev and N. A. Sventsitskaya, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Optics and Spectroscopy, vol. 73, pp. 114- 123, 1992.
  61. http://refractiveindex.info/?shelf=main&book=SiO2&page=Ghosh-o [Accessed:27-06-2016]
  62. [39] Thorlabs, grating tutorial. [Online]. Available: http://www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=8627 [Accessed:27-06-2016]
  63. http://search.newport.com/?q=*&x2=sku&q2=10RG1800-500-1 [Accessed:27-06-2016]
  64. [47] S. Yagi and K. Fujiura, “Electro-optic KTN devices,” Physics Procedia, December 2014.[conference invited paper]
  65. https://www.physics.rutgers.edu/grad/506/Acousto-optic%20modulator.pdf [Accessed:27-06-2016]
  66. [51] S. C. Wang, C. Y. Hsu, T. T. Yang, D. Y. Jheng, T. I. Yang, T. S. Ho, and S. L. Huang, “Laser-Diode pumped glass-clad Ti:sapphire crystal fiber laser,” Optics Letters, 2016. (submitted)
  67. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3647 [Accessed:27-06-2016]
  68. [56] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” Journal of the Optical Society of America B, vol. 21, pp. 1452-1462, 2004.
  69. [60] Coherent, “Tunable laser MBR-01,” 2016. [Online]. Available:
  70. https://www.coherent.com/downloads/MBR01_DS_0913revB_1.pdf
  71. [Accessed: 31-05-2016]