题名

DNA萃取和即時聚合酶鏈鎖反應於數位微流體晶片

并列篇名

DNA Extraction and Real-time Polymerase Chain Reaction on Digital Microfluidic Chip

DOI

10.6342/NTU201603805

作者

陳安得

关键词

生物實驗室晶片 ; DNA萃取 ; 即時聚合酶鏈鎖反應 ; 數位微流體 ; Lab-on-chip ; Electrowetting-on-dielectric ; Digital microfluidics ; DNA extraction ; qPCR

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

范士岡

内容语文

繁體中文

中文摘要

本文是利用數位微流體 (Digital microfluidic,DMF) 技術整合DNA萃取和即時聚合酶鏈鎖反應 (Real-time polymerase chain reaction,qPCR) 於晶片內。為了使point-of-care更加普及化,未來必須發展出一個個人裝置在不需要臨床人員下,能夠在任何時候和任何地方都可以即時檢測疾病,隨時都能掌握自己的健康狀況,最關鍵的技術就在DNA萃取和qPCR。在此晶片上可利用交流電產生介電濕潤 (Electrowetting on dielectric,EWOD) 來移動人體血液跟生物試劑套件混合來萃取血液裡的DNA,在100 nL的血液裡萃取出4.45 ng/μL濃度的DNA。跟傳統的DNA萃取比較,萃取時間減少75 %的反應時間,從120分鐘縮短至30分鐘,試劑消耗減少99.95 %的體積,從4222

英文摘要

This thesis reports the implementation of DNA extraction and real-time PCR (qPCR) on a digital microfluidic (DMF) device. We aim to develop a personalized point-of-care device for molecular diagnosis from human whole blood and commercial reagents kits driven by electrowetting-on-dielectric (EWOD) on a DMF device for DNA extraction and qPCR. The results from on-chip DNA extraction protocols were validated and quantified. In comparison wiht the traditional DNA extraction procedures in tubes, our on-chip extraction starting from a 100 nL whole blood obtained 52.8 % DNA concenttion at 4.45 ng/µL, required 25 % reaction time (from 120 min to 30 min), consumed 0.05 % volume of the entire reagents (from 4222

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1] E. T. Lagally, C. A. Emrich and R. A. Mathies, “Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis,” Lab on a Chip, vol. 1, pp. 102-107, 2001.
    連結:
  2. [2] R. M. Guijt, A. Dodge, G. W. K. van Dedem, N. F. de Rooija and E. Verpoort , “Chemical and physical processes for integrated temperature control in microfluidic devices,” Lab on a Chip, vol. 3 pp. 1-4, 2003.
    連結:
  3. [3] V. Srinivasan, V. K. Pamula and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab on a Chip, vol. 4, pp.310-315, 2004.
    連結:
  4. [4] C-J. Kim, “Microfluidics using the surface tension force in microscale,” SPIE conf. on micromaching and microfabrication, Santa Clara, 2000, pp. 44-55.
    連結:
  5. [5] P. Neuzil, J. Pipper and T. M. Hsieh, “Disposable real-time microPCR device: lab-on-a-chip at a low cost,” Lab on a Chip, vol. 2, pp. 292-298, 2006.
    連結:
  6. [9] T. Chen, Y. Jia, C. Dong, J. Gao, P. Mak and R. P. Martins, “Sub-7-second genotyping of single-nucleotide polymorphism by high-resolution melting curve analysis on a thermal digital microfluidic device,” Lab on a Chip, vol. 16, pp. 743-752, 2016.
    連結:
  7. [10] K. A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, John Wiley & Sons, 1990, pp. 3-8.
    連結:
  8. [11] Y. C. Chung, M. S. Jan, Y. C. Lin, J. H. Lin, W. C. Cheng and C. Y. Fan, “Microfluidic chip for high efficiency DNA extraction,” Lab on a Chip, vol. 4, pp. 141-147, 2004
    連結:
  9. [13] M. Mahalanabis, H. Al-Muayad, M. D. Kulinski, D. Altmanb and C. M. Klapperichac, “Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip,” Lab on a Chip, vol. 9, pp. 2811-2817, 2009
    連結:
  10. [14] M. Karle, J. Miwa, G. Czilwik, V. Auw?arter, G. Roth, R. Zengerleabd and F. von Stettenab, “Continuous microfluidic DNA extraction using phase-transfer magnetophoresis, ” Lab on a Chip, vol. 10, pp. 3284-3290, 2010
    連結:
  11. [15] R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack and V. Pamula, “Development of a digital microfluidic platform for point of care testing,” Lab on a Chip, vol. 8, pp. 2091-2104, 2008.
    連結:
  12. [6] M. A. Northru, C. Gonzalez, D. Hadley, R.F. Hills, P. Landre, S. Lehew, R. Saikil, J. J. Sninskyll, R. Watson and R. Watson, Jr., “A MEMS-based Miniature DNA analysis system,” The 8th International Conf. on Solid-State Sensors and Actuators, Sweden, 1995, pp. 764-767.
  13. [7] J. Berthier, Microdrops and Digital Microfluidics, 1st ed. pp. France: William Andrew Inc., 2008, pp. 323-326.
  14. [8] D. J. Boles, J. L. Benton, G. J. Siew, M. H. Levy, P. K. Thwa, M. A. Sandahl, J. L. Rouse, L. C. Perkins, A. P. Sudarsan, R. Jalili, V. K. Pamula, V. Srinivasan, R, B, Fair, P. B. Griffin, A. E. Eckhardt and M. G. Pollack, “Droplet-based pyrosequencing using digital microfluidics” Analytical Chemistry, vol. 83, pp. 8349-8447, 2011
  15. [12] W. C. Hui, L. Yobas, V. D. Samper, C. K Heng, S. Liwa, H. Ji, Y. Chen, L. Cong, J. Li and T. M. Limb, “Microfluidic systems for extracting nucleic acids for DNA and RNA analysis,” Sensors and Actuators, vol. 133, pp. 335-339, 2007.
  16. [16] 洪秉毅,