题名

轉殖小枯草桿菌纖維素酶前處理纖維對磨漿特性的影響

并列篇名

Impacts of Recombinant Paenibacillus Cellulase Pretreatment on Pulp Refining Characteristics

DOI

10.6342/NTU.2011.01220

作者

楊千瑩

关键词

紙漿 ; 酵素 ; 磨漿 ; 紙力性質 ; 濾水性 ; PFI磨漿機 ; 電子掃描顯微鏡 ; 原子力學掃描顯微鏡 ; pulp ; enzyme ; refining ; paper property ; drainability ; PFI ; SEM ; AFM

期刊名称

國立臺灣大學森林環境暨資源學系學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

柯淳涵

内容语文

英文

中文摘要

本論文主要著重於纖維酵素酶在磨漿的運用,包含對纖維的機械性質以及紙張物理性質的影響。近年來,酵素的利用已成為一項熱門的生物科技,也有越來越多的學者證實其潛力。磨漿為紙匹成型之不可或缺的過程,其對纖維素纖維進行機械性地處裡,改變纖維的表面形態與結構,形成所需的纖維特性,進而產生品質優良的紙匹。   然而,磨漿在製漿造紙工業為一相當耗能的過程,因此,本研究將探討纖維素酶在造紙過程,對於磨漿階段節約能源的效用。轉殖的Paenibacillus纖維素酶在本研究中用來提升兩種紙漿的磨漿效率,並搭配不同的酵素添加量與不同的PFI轉數。兩種紙漿分別為商用漂白的尤加利牛皮紙漿(Eucalyptus globulus kraft pulp)與英屬哥倫比亞海岸的花旗松牛皮紙漿(Pseudotsuga menziesii kraft pulp)。   試驗結果顯示,經過酵素前處理纖維的兩種紙漿,在磨漿後均具有較好的濾水性,且到達相同游離度時,所需要的磨漿轉數較少。雖然兩種紙漿的黏度因酵素的前處理而降低,但在紙張的各項物理性質經統計結果顯示並無重大的不良影響。除此之外,更以電子掃描顯微鏡來觀察纖維形態與表面結構的變化,僅添加纖維素酶而未磨漿的纖維表面並無明顯變化,但有比未經纖維素酶處理的纖維更為膨潤。而添加纖維素酶且經過磨漿處理的纖維表面,則比未添加酵維素酶的纖維有較好的帚化效果。最後,利用原子力學顯微鏡來分析纖維表面粗糙度之變化。統計結果顯示,兩種紙漿纖維在低劑量的纖維素酶前處理並搭配磨漿後,有較高的表面粗糙度。

英文摘要

This study aimed at the progress of application of cellulase in refining, including mechanism of action on cellulose and their effects on physical properties on paper. Utilization of enzymes becomes a popular biotechnology, and there are more and more researches confirm their potential. Refining is a necessary process to form the paper where the cellulosic fibers are mechanically treated, resulting into morphological and structural changes to produce desired fiber properties for a better quality paper. However, refining is energy-cost stage in pulp and paper industry. For this reason, the effect of cellulase was evaluated for energy saving in refining process of papermaking. The recombinant Paenibacillus cellulase was used to improve the efficiency of the refining process of two pulps, using different enzyme dosages and different PFI revolutions. The pulps used in this work were the commercial bleached Eucalyptus globulus kraft pulp and Pseudotsuga menziesii kraft pulp. This treatment increased drainability of both pulps at the same level of refining energy. In other words, that consumed less refining revolutions to reach the same drainability compared to the untreated pulps. Although the viscosity of both pulps were degrade with the enzymatic treatment, the physical properties of paper had no significant negatively influence on them. Moreover, the samples were observed by Scanning electron microscopy (SEM), and analyzed the roughness and height of fiber by Atomic force microscopy (AFM). The results showed the treatment with cellulase swelled the fibers in the absence of refining, and there were better fibrillation on the fibers treated with cellulase after refining. Furthermore, the statistical analysis of AFM suggested the both pulps treated with low cellulase dosage with PFI refining had higher roughness.

主题分类 生物資源暨農學院 > 森林環境暨資源學系
生物農學 > 森林
生物農學 > 生物環境與多樣性
参考文献
  1. Bajpai, P., Bajpai, P., International, P. 1996b. Organochlorine Compounds in Bleach Plant Effluents: Genesis and Control. Pira International Surrey, UK.
    連結:
  2. Bajpai, P. 1997. Microbial xylanolytic enzyme system: properties and applications. Advances in Applied Microbiology, 43, 141-194.
    連結:
  3. Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnology Progress, 15(2), 147-157.
    連結:
  4. Bhardwaj, N., Bajpai, P., Bajpai, P. 1996. Use of enzymes in modification of fibres for improved beatability. Journal of Biotechnology, 51(1), 21-26.
    連結:
  5. Bhardwaj, N., Hoang, V., Nguyen, K. 2007. Effect of refining on pulp surface charge accessible to polydadmac and FTIR characteristic bands of high yield kraft fibres. Bioresource Technology, 98(4), 962-966.
    連結:
  6. Bhat, M. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355-383.
    連結:
  7. Borgne, S., Quintero, R. 2003. Biotechnological processes for the refining of petroleum. Fuel Processing Technology, 81(2), 155-169.
    連結:
  8. Cao, Y., Tan, H. 2002. Effects of cellulase on the modification of cellulose. Carbohydrate Research, 337(14), 1291-1296.
    連結:
  9. Chesson, A. 1987. Supplementary enzymes to improve the utilization of pigs and poultry diets. Recent Advances in Animal Nutrition, 71-89.
    連結:
  10. Dienes, D., Egyhazi, A., Reczey, K. 2004. Treatment of recycled fiber with Trichoderma cellulases. Industrial Crops and Products, 20(1), 11-21.
    連結:
  11. Fardim, P., Durán, N. 2003. Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223(1-3), 263-276.
    連結:
  12. Ferraz, A., Guerra, A., Mendonca, R., Masarin, F., Vicentim, M., Aguiar, A., Pavan, P. 2008. Technological advances and mechanistic basis for fungal biopulping. Enzyme and Microbial Technology, 43(2), 178-185.
    連結:
  13. Gil, N., Gil, C., Amaral, M., Costa, A., Duarte, A. 2009. Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochemical Engineering Journal, 46(2), 89-95.
    連結:
  14. Gustafsson, J., Lehto, J.H., Tienvieri, T., Ciovica, L., Peltonen, J. 2003. Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 225(1-3), 95-104.
    連結:
  15. Haki, G., Rakshit, S. 2003. Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89(1), 17-34.
    連結:
  16. Hanley, S.J., Giasson, J., Revol, J.F., Gray, D.G. 1992. Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer, 33(21), 4639-4642.
    連結:
  17. Hesselman, K., Elwinger, K., Thomke, S. 1982. Influence of increasing levels of beta-glucanase on the productive value of barley diets for broiler chickens. Animal Feed Science and Technology, 7(4), 351-358.
    連結:
  18. Kamaya, Y. 1996. Role of endoglucanase in enzymatic modification of bleached kraft pulp. Journal of Fermentation and Bioengineering, 82(6), 549-553.
    連結:
  19. Ko, C., Chen, W., Tsai, C., Jane, W., Liu, C., Tu, J. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technology, 98(14), 2727-2733.
    連結:
  20. Ko, C., Lin, Z., Tu, J., Tsai, C., Liu, C., Chen, H., Wang, T. 2010. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. International Biodeterioration & Biodegradation, 64(1), 13-19.
    連結:
  21. Ko, C., Tsai, C., Lin, P., Chang, K., Tu, J., Wang, Y., Yang, C. 2010. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresource Technology, 101, 7882-7888.
    連結:
  22. Koskenhely, K., Ammala, A., Jokinen, H., Paulapuro, H. 2005. Effect of refining intensity on pressure screen fractionated softwood kraft. Nordic Pulp and Paper Research Journal, 20(2), 169-175.
    連結:
  23. Lecourt, M., Meyer, V., Sigoillot, J., Petit C, M. 2010. Energy reduction of refining by cellulases. Holzforschung, 64(4), 441-446.
    連結:
  24. Osterberg, M., Schmidt, U., Jaaskelainen, A.S. 2006. Combining confocal Raman spectroscopy and atomic force microscopy to study wood extractives on cellulose surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 291(1-3), 197-201.
    連結:
  25. Quirk, A., Lipkowski, J., Vandenende, C., Cockburn, D., Clarke, A.J., Dutcher, J.R., Roscoe, S.G. 2010. Direct Visualization of the Enzymatic Digestion of a Single Fiber of Native Cellulose in an Aqueous Environment by Atomic Force Microscopy. Langmuir, 26(7), 5007-5013.
    連結:
  26. Revesz, P. 1997. Refining restriction enzyme genome maps. Constraints, 2(3), 361-375.
    連結:
  27. Seo, Y., Shin, Y., Jeon, Y. 2000. Enzymatic and mechanical treatment of chemical pulp. Tappi Journal, 83(11).
    連結:
  28. Masarin, F., Ferraz, A. 2008. Evaluation of Eucalyptus grandis Hill ex Maiden biopulping with Ceriporiopsis subvermispora under non-aseptic conditions. Holzforschung, 62(1), 1-7.
    連結:
  29. Miller, G.L., 1959. Use of dinitrosalicyclic acid reagent for the determination of reducing sugars. Analytical Chemistry, 31, 426-428.
    連結:
  30. Oksanen, T., Pere, J., Paavilainen, L., Buchert, J., Viikari, L. 2000. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. Journal of Biotechnology, 78(1), 39-48.
    連結:
  31. Pastor, F., Pujol, X., Blanco, A., Vidal, T., Torres, A., Diaz, P. 2001. Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp BP-23: evaluation of its performance in pulp refining. Applied Microbiology and Biotechnology, 55(1), 61-68.
    連結:
  32. Ucar G., Balaban, M., 2004. Accurate determination of the limiting viscosity number of pulps. Wood Chemistry and Technology, 38, 139-148.
    連結:
  33. Warren, R. 2003. Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 50, 183-212.
    連結:
  34. Wong, K., Richardson, J., Mansfield, S. 2000. Enzymatic treatment of mechanical pulp fibers for improving papermaking properties. Biotechnology Progress, 16(6), 1025-1029.
    連結:
  35. Zhong, Q., Inniss, D., Kjoller, K., Elings, V. 1993. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Science Letters, 290(1-2), L688-L692.
    連結:
  36. Ampulski, R.S. 1985. The influence of fibre surface charge on tensile strength. Tappi Papermakers Conference Proceedings, 9-16.
  37. Babel, W., Endo, I., Enfors, S., Fiechter, A., Hoare, M., Hu, W., Mattiasson, B., Nielsen, J., Schugerl, K., Stephanopoulos, G. 2008. Advances in biochemical engineering/biotechnology. Food Biotechnology, 112.
  38. Bajpai, P., Bajpai, P. 1996a. In Advances in Biochemical Engineering/Biotechnology, Vol. 56. Springer-Verlag: Berlin, pp. 1.
  39. Bajpai, P., Mishra, S., Mishra, O., Kumar, S., Bajpai, A. 2006. Use of enzymes for reduction in refining energy-Laboratory studies. Tappi Journal, 5(11), 25.
  40. Brindley, C., Kibblewhite, R. 1996. Comparison of refining response of eucalypt and a mixed hardwood pulp and their blends with softwood. Appita Journal, 49, 37-42.
  41. Garcia, O., Torres, A., Colom, J., Pastor, F., Diaz, P., Vidal, T. 2002. Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose, 9(2), 115-125.
  42. Kerekes, R. 2005. Characterizing refining action in PFI mills. Tappi Journal, 4(3), 9-13.
  43. Leatham, G., Myers, G. 1990. A PFI mill can be used to predict biomechanical pulp strength properties. Tappi Journal, 73(4), 192-197.
  44. Moran, B. 1996. Enzyme treatment improves refining efficiency, recycled fiber freeness. Pulp & Paper, 70(9), 119-121.
  45. Paiva, A., Sequeira, S., Evtuguin, D., Kholkin, A., Portugal, I. 2007. Nanoscale structure of cellulosic materials: challenges and opportunities for AFM. Modern Research and Educational Topics in Microscopy, Formatex Microscopy, 726.
  46. Shamim, A., Jain, R., Mediratta, R., Prasad,, K. D., A., S. S. . 2006. Enzymatic treatment on chemical pulp in beating/ refining process- An attempt towards energy conservation. Indian Pulp and Paper Technical Association, 18(3), 127- 132
  47. Thomke, S., M. Rundgreen, K. Hesselman 1980. The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting of the European Association of Animal Production. Commission on Animal Production, Munich, Germany, 5.
  48. Yerkes, W.D. 1986. Process for the diggestion of cellulosic material by enzymatic action of trametes svaveolens, U.S. Patent, 3,406,089.