参考文献
|
-
Aresta, M., Dibenedetto, A., Pastore, C. (2003). Synthesis and characterization of Nb(OR)4[OC(O)OR] (R = Me, Et, Allyl) and their reaction with the parent alcohol to afford organic carbonates. Inorganic Chemistry, 42(10), 3256–61.
連結:
-
Aronne, A., Marenna, E., Califano, V., Fanelli, E., Pernive, P., Trifuoggi, M. (2007). Sol-gel synthesis and structural characterization of niobium-silicon mixed-oxide nanocomposites. Sol-Gel Sci Techanol, 43(2), 193–204.
連結:
-
Brayner, R., Bozon-Verduraz, F. (2003). Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Physical Chemistry Chemical Physics, 5(7), 1457–1466.
連結:
-
Brown, W. H. (1999). Introduction to organic chemistry: 2nd Edition. Wiley, New York
連結:
-
Brunauer, S., Emmett, P. H., Teller, E. (1938). Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(1), 309–319.
連結:
-
Cai, Y., Yang, S., Jin, S., Yang, H., Hou, G., Xia, J. (2011). Electrochemical synthesis, characterization and thermal properties of niobium ethoxide. Journal of Central South University of Technology, 18(1), 73–77.
連結:
-
Calvino-Casilda, V., Bañares, M. A. (2012). In-situ Raman monitoring of Michael addition for the synthesis of 1-substituted imidazoles intermediates with antiviral properties. Catalysis Today, 187(1), 191–194.
連結:
-
Chen, L., Nohair, B., Kaliaguine, S. (2016). Glycerol acetalization with formaldehyde using water-tolerant solid acids. Applied Catalysis A: General, 509(5), 143–152.
連結:
-
Demirel-Gülen, S., Lucas, M., Claus, P. (2005). Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catalysis Today, 102(15), 166–172.
連結:
-
Deutsch, J., Martin, A., Lieske, H. (2007). Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. Journal of Catalysis, 245(2), 428–435.
連結:
-
Datka, J., Turek, A. M., Jehng, J. M., Watchs, I. E. (1992). Acidic properties of supported niobium oxide catalysts: an infrared spectroscopy investigation. Journal of Catalysis, 135(1), 189–199.
連結:
-
Díaz-Álvarez, A. E., Francos, J., Lastra-Barreira, B., Crochet, P., Cadierno, V. (2011). Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chemical Communications, 47(22), 6208.
連結:
-
Dodson, J. R., Leite, T. d C. M., S. Pontes, N., Peres Pinto, B., Mota, C. J. A. (2014). Green Acetylation of Solketal and Glycerol Formal by Heterogeneous Acid Catalysts to Form a Biodiesel Fuel Additive. ChemSusChem, 7(9), 2728–2734.
連結:
-
Emil, F., Pfähler, E. (1924). Über Glycerin-aceton und seine Verwendbarkeit zur Reindarstellung von α-Glyceriden; über eine Phosphorsäure-Verbindung des Glykols. Untersuchungen aus Verschiedenen Gebieten, 53(9), 627–642.
連結:
-
Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., Castanheiro, J. E. (2010). Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Applied Catalysis B: Environmental, 98(1), 94–99.
連結:
-
Francisco, M. S. P., Landers, R., Gushikem, T. (2004). Local order structure and surface acidity properties of a Nb2O5/SiO2 mixed oxide prepared by the sol-gel processing method. Journal of Solid State Chemistry, 177(7), 2432–2439.
連結:
-
Gao, X., Watchs, I. E., Wong, M. S., Ying, Y. (2001). Structural and reactivity properties of Nb-MCM-41: comparison with that of Highly Dispered Nb2O5 Catalysts. Journal of Catalysis, 203(1), 18–24.
連結:
-
Gadamsetti, S., Rajan, N. P., Rao, G. S., Chary, K. V. R. (2015). Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts. Journal of Molecular Catalysis A: Chemical, 410, 49–57.
連結:
-
Gu, Y., Jérôme, F. (2010). Glycerol as a sustainable solvent for green chemistry. Green Chemistry, 12(7), 1127.
連結:
-
Huang, Y.H., Wu, J. H. (2008). Analysis of biodiesel promotion in Taiwan. Renewable and Sustainable Energy Reviews, 12(4), 1176–1186.
連結:
-
Jehng, J. M., Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chem. Material, 3(1), 100–107.
連結:
-
Jie, H., Lia, Q. J., Fan, Y. N. (2013). Dispersion states and acid properties of SiO2-supported Nb2O5. Journal of Solid Chem., 202, 121–127.
連結:
-
Melero, J. A. , Grieken, R. V, Morales, G., Paniagua, M. (2007). Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Engry Fuels, 21(3). 1782–1791.
連結:
-
Khayoon, M. S., Abbas, A., Hameed, B. H., Triwahyono, S., Jalil, A. A., Harris, A. T., Minett, A. I. (2014). Selective acetalization of glycerol with acetone over nickel nanoparticles supported on multi-walled carbon nanotubes. Catalysis Letters, 144(6), 1009–1015.
連結:
-
Lee, E. L., Wachs, I. E. (2007). In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J. Phys. Chem., 111(39), 14410–14425.
連結:
-
Li, L., Korányi, T. I., Sels, B. F., Pescarmona, P. P. (2012). Highly-efficient conversion ofglycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem., 14, 1611–1619.
連結:
-
Manjunathan, P., Maradur, S. P., Halgeri, A. B., Shanbhag, G. V. (2015). Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A: Chemical, 396, 47–54.
連結:
-
Marzo, P. C., Gervasini, A., Matteo, M. (2008). Despersed NbOx catalytic phases in silica matrixes: influence of niobium concentration and preparative route. J. Phys. Chem., 112(36), 14064–14074..
連結:
-
Melero, J. A., Grieken, R. V., Morales, G., Paniagua, M. (2007) Acidic Mesoporous Silica for the Acetylation of Glycerol: Synthesis of Bioadditives to Petrol. Engry & Fuels. 21(3). 1782–1791.
連結:
-
Menezes, F. D. L., Guimaraes, M. D. O., Da Silva, M. J. (2013). Highly Selective SnCl 2 –Catalyzed Solketal Synthesis at Room Temperature. Industrial and Engineering Chemical Rrsearch, 52(47). 13709–16713
連結:
-
Nakagawa, Y., Tomishige, K. (2011). Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, 1(1), 179–190.
連結:
-
Nanda, M. R., Yuan, Z., Qin, W., Ghaziaskar, H. S., Poirier, M. A., Xu, C. (Charles). (2014). A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening. Applied Energy, 123(15), 75–81.a
連結:
-
Nanda, M. R., Yuan, Z., Qin, W., Ghaziaskar, H. S., Poirier, M. A., Xu, C. (Charles). (2014). Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization. Fuel, 128(15), 113–119.b
連結:
-
Nanda, M. R., Zhang, Y., Yuan, Z., Qin, W., Ghaziaskar, H. S., Xu, C. (2016). Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renewable and Sustainable Energy Reviews, 56(1), 1022–1031.
連結:
-
Newman, M. S., Renoll, M. (1945). Improved Preparation of Isopropylidene Glycerol. Journal of the American Chemical Society, 67(9), 1621–1621.
連結:
-
Nowak, I., Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603–3624.
連結:
-
Ozorio, L. P., Pianzolli, R., Mota, M. B. S., Mota, C. J. A. (2012). Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23(5), 931–937.
連結:
-
Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J. M. D. (2008). Graphene Oxide Dispersions in Organic Solvents. Langmuir, 24(19), 10560–10564.
連結:
-
Rosenkilde, C., Voyiatzis, G., Jensen, V. R., Ystenes, M., Ostvold, T. (1995). Raman Spectroscopic and ab initio Quantum Chemical Investigations of Molecules and Complex Ions in the Molten System CsCl-NbCls-NbOC13. Inorg. Chem, 34(17), 4360–4369.
連結:
-
Sandesh, S., Halgeri, A. B., Shanbhag, G. V. (2015). Utilization of renewable resources: Condensation of glycerol with acetone at room temperature catalyzed by organic–inorganic hybrid catalyst. Journal of Molecular Catalysis A: Chemical, 401(15), 73–80.
連結:
-
Selvaraj, M., Kawi, S., Park, D. W., Ha, C. S. (2009). A Merit Synthesis of Well-Ordered Two-Dimensional Mesoporous Niobium Silicate Materials with Enhanced Hydrothermal Stability and Catalytic Activity. J. Phys. Chem. C., 113(18), 7743-7749
連結:
-
Souza, T. E., Padula I. D., Teodoro M. M. G., Resende, J. M., Souza, P. P., Oliverira, L. C. A. (2015). Amphiphilic property of niobium oxyhydroxide for waste glycerol conversion to produce solketal. Catalysts Today, 254, 83–89.
連結:
-
Stawicka, K., Díaz-Álvarez, A. E., Calvino-Casilda, V., Trejda, M., Bañares, M. A., Ziolek, M. (2016). The role of bronsted and lewis acid sites in acetalization of glycerol over modified mesoporous cellular foams. J. Phys. Chem. 120(30). 16699–16711.
連結:
-
Suprun, W., Lutecki, M., Haber, T., Papp, H. (2009). Acidic catalysts for the dehydration of glycerol: Activity and deactivation. Journal of Molecular Catalysis A: Chemical, 309(1–2), 71–78.
連結:
-
Suriyaprapadilok, N., Kitiyanan, B. (2011). Synthesis of Solketal from Glycerol and Its Reaction with Benzyl Alcohol. Energy Procedia, 9, 63–69.
連結:
-
Tauster, S. J. (1987). Strong metal-support interactions. Accounts of Chemical Research, 20(11), 389–394.
連結:
-
Tavares da Silva, C. L., Camorim, V. L. L., Zotin, J. L., Duarte Pereira, M. L. R., J., A. D. C. (2000). Surface acidic properties of alumina-supported niobia prepared by chemical vapour deposition and hydrolysis of niobium pentachloride. Catalysis Today, 57(3), 209–217.
連結:
-
Tranca, D. C., Wojtaszek-Gurdak, A., Ziolek, M., Tielens, F. (2015). Supported and inserted monomeric niobium oxide species on/in silica: a molecular picture. Phys. Chem. Chem. Phys., 17(34), 22402–22411.
連結:
-
Trejda, M., Tuel, A., Kujawa, J., Kilos, B., Ziolek, M. (2008). Niobium rich SBA-15 materials – preparation, characterisation and catalytic activity, Microporous and Materials, 110(2), 271–278
連結:
-
V. Calvino-Casilda, Stawicka, K., Trejda, M., Ziolek, M., Bañares, M. A. (2014). Real-time Raman monitoring and control of the catalytic acetalization of glycerol with acetone over modified mesoporous cellular foams. J. Phys. Chem., 118(30), 10780–10791.
連結:
-
Wachs I. E., Jehng, J. M., Deo, G., Hu, H., Arora, N. (1996). Redox properties of niobium oxide catalysts. Catalysis Today, 28(1-2), 199–205.
連結:
-
Ying, X. G., Wachs, I. E., Wong, M. S., Ying, J. Y. (2001). Structural and reactivity properties of Nb-MCM-41: comparison with that of highly dispersed Nb2O5/SiO2 catalysts. Journal of Catalysts, 203(1), 18–24.
連結:
-
沈胤亨, 生質柴油之整廠程序設計與控制 Plantwide Design and Control of Biodiesel production,碩士論文, 國立台灣大學化學工程研究所,2008
連結:
-
婁介嶺,烷硫醇分子在矽(111)面上之自組裝特性研究,碩士論文,國立清華大學先進光源科技學程碩士班,2000
連結:
-
賴英煌、邱雯藝、洪偉修,同步輻射X-ray光電子能譜在表面化學之研究,化學季刊,2002,60,381–390
連結:
-
簡秀真,貴金屬奈米顆粒修飾三氧化鎢奈米線陣列在太陽光下增加光電化學產氫效率,碩士論文,國立台灣大學地質科學研究所,2012
連結:
-
Malas, A. A. (1987). Method of producing halide-free metal oxides. European Patent Application., 0251 432.
-
Nair, G. S., Adrijanto, E., Alsalme, A., Kozhevnikov, I. V, Cooke, D. J., Brown, D. R., Shiju, N. R. (2012). Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catal. Sci. Technol. Catal. Sci. Technol, 2(2), 1173–1179.
-
Valencia, J. C. (2016). Monitorizacion Raman de la Formacion de Solketal Catalizada Por Oxidos Mixtos de Nb-Ta. University Politecica de Madrid. Master Thesis.
-
Yuxia, Z., Wei, L., Huiping, T., & Jun, L. (2006). Advances in Acidity Characterization of solid acid Catalysts. 中國化工, 37(7), 607–614.
-
林麗娟,X光繞射原理及其應用,工業材料86期,1994,100–109
-
張逢源,林秋裕,淺談台灣生質能發展,台灣經濟部能源局,2008,5
-
蔡幸娟,以蛋殼、水泥為催化劑轉酯大豆由為生質柴油之反應條件研究,碩士論文,國立臺中教育大學科學應用與推廣學系科學教育研究所,2002
|