题名

擬人化雙足機器人之設計與實作

并列篇名

Design and Implement of the Anthropomorphic Biped Robot

DOI

10.6342/NTU.2014.01183

作者

江明勳

关键词

擬人設計 ; 機構設計 ; 雙足機器人 ; 擬人行走 ; Anthropomorphic design ; Mechanical design ; Biped robot ; Human-like walking ; Stretch walking

期刊名称

國立臺灣大學電機工程學系學位論文

卷期/出版年月

2014年

学位类别

博士

导师

張帆人

内容语文

英文

中文摘要

建造人形機器人需要相當多的知識,舉凡機構設計、電子、軟體、以及控制工程皆為其必備學問。儘管人類已專注於此領域有數十年之久,機器人的動作仍與人類差距甚遠。為了避免機器人摔倒,時下的機器人控制多藉由分析人體動態、考量零力矩點、以及預先規劃關節軌跡來確保其穩定性。然而,這些可觀的成就背後仍有許多缺點,諸如對等效模型的重度依賴、大量的運算需求、以及可觀的能量消耗。礙於現有的雙足機器人與人體在先天結構上的差異,人類的動態量測資料對機器人行走的協助不大。 本篇針對雙足機器人之機構設計提出幾個新概念。這些新概念讓我們的機器人更適合擬人行走。受到人體骨架的啟發,我們幫機器人打造一副擬人的骨盆、一對具有Q角度的大腿、以及圓弧形的腳跟。與傳統機器人相較,擬人骨盆有助於機器人調整上半身的重心位置,從而降低對踝關節力矩的需求、也減少行進速度的劇烈變化。具有Q角度的膝關節縮短了重心到腳板間的橫向距離,因此在額狀面上有較佳的平衡。圓弧形的腳跟,將腳跟觸地時的線接觸問題簡化為點接觸問題,於是大幅減少了姿態控制的相關工作。更進一步,只要精確設計足部的機構,就能以固定擺長的倒單擺來模擬機器人的行走,如此便能省去許多有關擺長控制的問題,並降低其對數學模型依賴之程度。根據本篇提出的架構,我們的雙足機器人比傳統機器人有更擬人的步態。

英文摘要

The development of the humanoid robot requires lots of knowledge in mechanical design, electronics, software engineering and control. Despite human beings have committed to this work for several decades, motions of humanoid robots are still far from achieving the human-like walking. In order to prevent the robot from falling down, most of nowadays’ humanoid robots are controlled by analytical approaches based on human dynamics, zero-moment point considerations, and pre-calculated joint trajectories to ensure the stability. However, there still have some drawbacks, for examples, strong model dependency, high energetic and computational costs, etc. Moreover, due to the big innate structure differences between the biped robots and human beings, the kinematics of human beings in helping robot gaits is very limited. Some new concepts of mechanical design of a humanoid robot are proposed in this thesis. With these concepts, the robot is more suitable for human-like walking due to its new structure. Inspired by human skeleton, an anthropomorphic pelvis, a pair of Q-angle (quadriceps angle) knees and arc-heels were designed and mounted on the robot. Compared to the conventional humanoid robots, the anthropomorphic pelvis can adjust the center of gravity of the upper body by its tilt motion. Thus both the torque at the ankle joint and the velocity variations during walking are reduced. The Q-angle-knees shorten the lateral distance between the center of gravity and the feet, thus a better balance is obtained in frontal plane when single-leg supporting. The arc heel simplifies the line-contact problem to a point-contact problem when heel contact with the ground. Hence many works on posture control are reduced. Furthermore, with more precise analysis of the foot mechanism, the fixed-length inverted pendulum model can be applied in biped walking. Thus the redundant works and power consumption in length variable inverted pendulum system are decreased. Also the dependency on mathematical model is less than that of traditional biped robots. As the result of the new structure, the biped robot is able to walk much like human beings than conventional ones.

主题分类 電機資訊學院 > 電機工程學系
工程學 > 電機工程
参考文献
  1. M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
    連結:
  2. M. Vukobratovic, B. Brovac, D. Surla and D.Stokic, Biped Locomotion, New York: Springer-Verlag, 1990.
    連結:
  3. Collins S, Ruina A, Tedrake R and Wisse M, “Efficient bipedal robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712, pp. 1082-1085, 2005.
    連結:
  4. W. T. Dempster, Gabel W. C. and Felts W. J. L., “The anthropometry of manual work space for the seated subjects,” American Journal of Physics and Athropometry, vol. 17, pp. 289–317, 1959.
    連結:
  5. NASA, “Man-systems integration standards,” Technical report, National Aeronautics and Space Administration, 1995.
    連結:
  6. V.T. Inman et al., Human Walking, Baltimore, MD: Williams and Wilkins, 1981.
    連結:
  7. M. Vukobratovic and D. Juric, “Contribution to the synthesis of biped gait,” IEEE Transactions on Biomedical Engineering, vol. 16, no. 1, pp. 1-6, 1969.
    連結:
  8. Chi Zhu1 and Atsuo Kawamura, “Bipedal Walking Pattern Design by Synchronizing the Motions in the Sagittal and Lateral Planes,” in Humanoid Robots: Human-like Machines, Vienna, Austria: I-Tech, 2007, pp. 642.
    連結:
  9. Anthony G Schache, Peter D Blanch and Anna T Murphy, “Relation of anterior pelvic tilt during running to clinical and kinematic measures of hip extension,” British Journal of Sports Medicine, vol. 34, no. 4, pp. 279-283, 2000.
    連結:
  10. Richard Gajdosik, Ralph Simpson, Richard Smith, Richard L DonTigny, “Pelvic tilt: Intratester reliability of measuring the standing position and range of motion,” Journal of the American Physical Therapy Association, vol. 65, pp. 169-174, 1985.
    連結:
  11. Ming-Hsun Chiang, Fan-Ren Chang, “Anthropomorphic design of the human-like walking robot,” Journal of Bionic Engineering, vol. 10, pp. 186–193, 2013.
    連結:
  12. Steven H. Collins, Peter G. Adamczyk and Arthur D. Kuo, “Dynamic arm swinging in human walking,” Proceeding of the Royal of Society, Biological Sciences, vol. 276, pp. 3679-3688, 2009.
    連結:
  13. [1]
  14. H. Lim and A. Takanishi, “Biped walking robots created at Waseda University: WL and WABIAN family,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 49–64, 2006.
  15. [2]
  16. I. Kato, “The WABOT-1,” Bulletin of Science and engineering Research Laboratory, Waseda University, no. 62, 1973.
  17. [3]
  18. [4]
  19. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, “The development of Honda humanoid robot,” Proceeding of the IEEE International Conference on Robotics and Automation (ICRA), Leuven, Belgium, 1998, pp. 1321-1326.
  20. [5]
  21. [6]
  22. Y. Ogura, K. Shimomura, H. Kondo, A. Morishima, T. Okudo, S. Momoki, H. Lim and A. Takanishi, “Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot,” Proceeding of the 2006 IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS), Beijing, China, 2006, pp. 3976-3981.
  23. [7]
  24. K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka and S. Kajita, “Cybernetic Human HRP-4C,” Proceeding of the 2009 IEEE-RAS International Conference on Humanoid Robots, Paris, 2009, pp. 7–14.
  25. [8]
  26. Aiman Musa M. Omer, Reza Ghorbani, Hun-ok Lim and Atsuo Takanishi, “Semi-passive dynamic walking for humanoid robot using controllable spring stiffness on the ankle joint,” Proceedings of the 2009 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, 2009, pp. 681-685.
  27. [9]
  28. [10]
  29. Hideki Kondo, Yu Ogura, Kazushi Shimomura, Shimpei Momoki, Tatsu Okubo, Hun-Ok Lim and Atsuo Takanishi, “Emulation of human walking by biped humanoid robot with heel-contact and toe-off motion,” The International Journal of Robotics and Mechatronics, vol. 20, no. 5, pp. 739-749, 2008.
  30. [11]
  31. [12]
  32. R. Drills and R. Contini, Body Segment Parameters. Technical Report 1166.03, New York University, School of Engineering and Science, New York. 1966.
  33. [13]
  34. David A.Winter, Biomechanics And Motor Control of Human Movement, New York: Wiley, 1990.
  35. [14]
  36. Glenn Elert. “Center of mass of a human,” hypertextbook.com [Online]. Available: http://hypertextbook.com/facts/2006/centerofmass.shtml. [Accessed: July 7, 2014].
  37. [15]
  38. H. M. Lee and Alex Moroz. “Physical Therapy,” merckmanuals.com [Online]. Available: http://www.merckmanuals.com/professional/special_subjects/rehabilitation/physical_therapy_pt.html#v1128315. [Accessed: July 7, 2014].
  39. [16]
  40. [17]
  41. [18]
  42. [19]
  43. [20]
  44. Ming-Hsun Chiang, Fan-Ren Chang, “Anthropomorphic Mechanisms Help Robots Achieve Human-like Walking,” Proceeding of the 2014 International Conference on Control Engineering and Electronics Engineering, Chengdu, China, 2014, In press.
  45. [21]
  46. Hugh Herr and Marko Popovic, “Angular momentum in human walking,” The Journal of Experimental Biology, vol. 211, no. 4, pp. 467-481, 2008.
  47. [22]
  48. Henry Gray. “The pelvis,” theodora.com [Online]. Available: http://www.theodora.com/anatomy/the_pelvis.html#txt59/. [Accessed July 7, 2014]
  49. [23]
  50. [24]
  51. [25]
  52. MARK S. JUHN, D.O., “Patellofemoral pain syndrome: A review and guidelines for treatment,” Journal of the American Academy of Family Physicians, vol. 60, pp. 2012-2018, 1999.
  53. [26]
  54. Kenji Kaneko, Fumio Kanehiro, Mitsuharu Morisawa, Tokuo Tsuji, Kanako Miura, Shin’ichiro Nakaoka, Shuuji Kajita and Kazuhito Yokii, “Hardware improvement of cybernetic Human HRP-4C for entertainment use,” Proceeding of the 2011 IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS), San Francisco, CA, USA, 2011, pp. 4392-4399.
  55. [27]
  56. [28]
  57. Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho Koyachi and Kazuo Tanie, “Planning walking patterns for a biped robot,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280-289, 2001.
  58. [29]