题名

以奈米研磨技術製作應用於揮發性有機氣體偵測之金屬氧化物型氣體感測陣列

并列篇名

Development of metal oxide gas sensor array used in volatile organic compounds detection by nano grinding technology

DOI

10.6342/NTU201602547

作者

梁維元

关键词

氣體感測器 ; 電子鼻 ; 陣列 ; 金屬氧化物半導體 ; 三氧化鎢 ; 二氧化鈦 ; 氧化鋅 ; 奈米研磨 ; metal oxide ; gas sensor ; electronic nose ; sensor array ; Tungsten trioxide ; Titanium dioxide ; Zinc oxide ; nano grinding

期刊名称

臺灣大學生醫電子與資訊學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

田維誠

内容语文

繁體中文

中文摘要

氣體感測器的應用範圍相當廣泛,不論是工業安全維護、環境污染偵測還是疾病早期診斷都可以看到氣體感測器的貢獻。然而過去在分辨與偵測多種氣體時,往往需要透過氣相層析儀(Gas chromatograph, GC)以及質譜儀(Mass spectrometry, MS)的協助才能達成,但是由於儀器昂貴、不便攜帶、需專業人士操作等限制,過程相當耗費成本與時間。 因此本研究致力於開發出模擬電子鼻功能的有機氣體感測陣列以及能夠分辨混合氣體中個別氣體濃度的模型。期望達到能夠一次檢測多種氣體且同時具有便利性、微小性的優點。 製程方面,本研究利用奈米研磨以及旋轉塗佈的製程,製作出由WO3, TiO2, ZnO 等三種金屬氧化物半導體材料作為感測薄膜的感測器所組成的陣列。此製程的優點包括:可以在常溫下(25oC)進行量測,不需要額外的加熱器或是光激發,以及製程中不需使用真空腔體,可大幅減少時間及成本。 透過陣列對於單一氣體的量測,得到個別感測器對於個別氣體的靈敏度,並組成「靈敏度矩陣」。由實驗結果發現,各感測器的靈敏度大小為TiO2最大,WO3居中, ZnO最小。這是因為在研磨後顆粒大小的關係,顆粒越小材料和氣體分子接觸的總表面積就越大,反應跟靈敏度也就越大。另外,針對個別感測器對氣體的靈敏度的實驗結果都可以發現到,甲醇的反應最大,接著是乙醇,最後是甲苯。這個現象可以用極性來解釋,因為金屬氧化物表面帶有極性,而極性強的氣體分子在與材料表面的吸附效率會比極性相對較弱的分子來得高。氣體吸附效率越好,反應程度也就越大,靈敏度也越大。 在混合氣體的量測實驗中,本研究所開發的氣體感測陣列利用由單一氣體實驗中得到的「靈敏度矩陣」,有效地在500-5000ppm的線性區間內求得混合氣體中甲醇、乙醇、甲苯的個別濃度與組成比例,且誤差5%之內。成功驗證利用陣列加上矩陣實驗濃度轉換的想法。 值得一提的是,本研究室本實驗室團隊首次將多個氣體感測器整合成氣體感測陣列,打破以往在氣體量測僅限於一次一種氣體的限制,大幅增加了實驗效率,也為本實驗室團隊開啟一個新的研究方向。

英文摘要

In this research, a novel gas sensor array that is able to distinguish the individual concentration and fraction of each gas from mixed gas has been developed. The idea is originated from electronic nose. By using nano grinding technology, the particle size of the chosen sensing materials, which is Tungsten trioxide, Titanium dioxide, Zinc oxide, can be effectively reduced to nano scale. There are two main advantages of using nano grinding as manufacturing process. Firstly, the sensor array can be operated room temperature (25oC), no heating process or light activation involved , due to the nano scale particle size and high surface-volume ratio. Secondly, there is no vacuum pumping equipment and annealing process involved during the the manufacturing process, which can reduced huge amount of time and cost. Methanol, Ethanol and Toluene are chosen as the detected gases. Each sensor of the sensor array (WO3, TiO2, ZnO) responds to each detected gas differently. By combining the sensitivities to a matrix, it’s possible to effectively distinguish the individual concentration of Methanol, Ethanol and Toluene from the mixed gas of these three gases. The best detection range of the sensor array is within 500 to 5000ppm. The result of 5% error rate shows that this sensor array is reliable under certain condition.

主题分类 基礎與應用科學 > 資訊科學
醫藥衛生 > 醫藥總論
電機資訊學院 > 生醫電子與資訊學研究所
参考文献
  1. [2] W.Cao and Y.Duan, "Breath analysis:potential of clinical diagnosis and exposure assessment," Clinical chemistry, vol.52., pp.800-811,2006.
    連結:
  2. [3] B. Buszewski, M.Kesy, T. Ligor and A. Amann, “Human exhaled air analytics: biomarkers of diseases,” Biomedical chromatography, vol. 21, pp. 553-566, 2007.
    連結:
  3. [4] M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg and R.N. Cataneo, “Variation in volatile organic compounds in the breath of normal humans,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 729, pp. 75-88, 1999.
    連結:
  4. [5] A.Wilson and M. Baietto, "Advances in electronic-nose technologies developed for biomedical applications, " Sensors , vol. 11(1), pp. 1105-1176, 2011.
    連結:
  5. [7] 周昭宏, 化學液體成膜的紫外光激二氧化鈦感測器, 2012
    連結:
  6. [9] 張瑞麟, 光激發鐵氮共摻雜氧化鈦高靈敏濕度氣體感測器, 2014
    連結:
  7. [11] K. Persaud and G. Dodd., “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, vol. 299, pp. 352-355, 1982.

    連結:
  8. [13] A. D. Wilson and M. Baietto, “Applications and Advances in Electronic-Nose Technologies,” Sensors, vol. 9, pp. 5099-5148, 2009.
    連結:
  9. [14] Hua Xu and Zhang Lizhi, "Selective Nonaqueous Synthesis of C− Cl-Codoped TiO2 with Visible-Light Photocatalytic Activity," The Journal of Physical Chemistry C, vol. 114(26), pp. 11534–11541, 2010.

    連結:
  10. [15] F. Sauvage, F.D. Fonzo , Li Bassi, C. S. Casari , V. Russo, G. Divitini and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano letters, vol.10(7), pp. 2562-2567, 2005.
    連結:
  11. [16] J. Zou, Q. Zhang, K. Huang and N. Marzari, “Ultraviolet photo-detectors based on anodic TiO2 nanotube arrays,” The Journal of Physical Chemistry C, vol. 114.(24), pp. 10725-10729, 2010.

    連結:
  12. [17] J. Gong, Y. Li, Z. Hu, Z. Zhou and Y. Deng, “Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers,” The Journal of Physical Chemistry C, vol. 114(21), pp. 9970-9974, 2010. 

    連結:
  13. [18] B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani and E. K. Suh, “TiO2 thin film gas sensor for monitoring ammonia,” Materials Characterization, vol. 58(8), pp. 680-684., 2007.
    連結:
  14. [21] D. J. Smith, J. F. Vatelino, R. S. Falconer, E. L. Wittman,“Stability, sensitivity and selectivity of tungsten trioxide films for sensing applications,” Sensor and Actuators B: Chemical, vol. 13(14), pp. 264-268, 1993.
    連結:
  15. S.Santucci, E. Comini, G. Faglia and G. Sberveglieri,“Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol–gel, thermal evaporation and r.f. sputtering techniques,” Sensor and Actuators B: Chemical, vol. 64, pp. 182-188, 2000.
    連結:
  16. [23] B. O‘Regan and M. Gratzel,“A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,”Nature, vol. 353, pp. 737-740, 1991.
    連結:
  17. [24] Q. Zhao, H. Z. Zhang, Y. W. Zhu and S. Q. Feng,“Morphological effects on the field emission of ZnO nanorod arrays,”Applied physics letters, vol. 86, pp. 203115, 2005.
    連結:
  18. [25] M. S. Arnold, P. Avouris and Z. W. Pan,“Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,“ The Journal of Physical chemistry B, vol.107, pp. 659-663, 2003.
    連結:
  19. [26] W. Park, J. S. Kim and G. C. Yi, ”Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Applied physics letters, vol. 85, pp. 5052-5054, 2004.
    連結:
  20. [27] J.F.Chang and H.H. Kuo, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor,” Sensor and Actuators B: Chemical, vol. 84, pp. 258–264, 2002.

    連結:
  21. [28] H. Tang, Y. Li, C. Zheng, J. Ye, X. Hou and Y. Lv, “An ethanol sensor based on cataluminescence on ZnO nanoparticles,” Talanta, vol. 72(4), pp. 1593-1597, 2007.
    連結:
  22. [30] J. X. Wang, X. W. Sun, Y. Yang and C. M. L. Wu, “N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas,” Nanotechnology, vol. 20(46), pp. 465501, 2009.
    連結:
  23. [31] G.S Trivikrama Rao and D. T.Rao, “Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature,”Sensor and Actuators B: Chemical, vol. 55, pp. 166-169, 1999.

    連結:
  24. [32] X. Jiaqiang, “Gas sensing properties of ZnO nanorods prepared by hydrothermal method,” Journal of materials science, vol. 40, pp. 2919-2921, 2005.
    連結:
  25. [34] H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochemical and Solid-State Letters, vol. 13(11), pp. J125-J128, 2010.
    連結:
  26. [36] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What
    連結:
  27. determines our choice?." Materials Science and Engineering: B,
    連結:
  28. [37] C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, "Metal oxide gas
    連結:
  29. sensors: sensitivity and influencing factors." Sensors, vol. 10(3), pp.
    連結:
  30. 2088-2106, 2010.
    連結:
  31. [38] E. A. Guggenheim,”The theoretical basis of Raoult's law,”
    連結:
  32. 參考資料
  33. [1] 行政院衛生福利部,“中華民國102年死因統計,”2014.
  34. [6] 徐正綸, 以無電鍍金層作為加熱器之微型層析管柱晶片應用於微型氣相層
  35. 析系統, 2015
  36. [8] 張正義, 以奈米金單層膜保護團簇塗佈於堆疊式電極結構之揮發性有機化
  37. 合物氣體感測器, 2013
  38. [10] 黃柏愷, 整合揮發性有機化合物氣體微感測器與改良式攜帶型氣相層析
  39. 儀之研究, 2015
  40. [12] J.W. Gardner and P.N. Bartlett, ”A brief history of electronic noses,” Sensor and Actuators B: Chemical, vol. 18, pp. 210-211, 1994.
  41. [19] A. Haidry, P. Schlosser, P. Durina, M. Mikula, M. Tomasek, T. Plecenik and A. Plecenik, “Hydrogen gas sensors based on nanocrystalline TiO2 thin films,” Open Physics, vol. 9(5), pp. 1351-1356, 2011.
  42. [20] J.Haider, “Nanostructure Dopants TiO2 Films for gas sensing”, Iraqi journal of applied physics, pp.27-31, 2011.
  43. [22] C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando,
  44. [29] R.Martins, E. Fortunato and P. Nunes, “Zinc oxide as an ozone sensor,” Journal of applied physics, vol. 96(3), pp. 1398-1408, 2004.

  45. [33] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sensors and Actuators B: Chemical, vol. 126(2), pp. 473-477, 2007.
  46. [35] J.Chen, ”Advanced Wet Grinding and Dispersing Technology Specially Considering the Ultra Fine Particle Size Range,‘“ 2012.
  47. vol. 139(1), pp. 1-23, 2007.
  48. Transactions of the Faraday Society, vol. 33, pp.151-156, 1937.
  49. [39]黃琮偉, 水熱法製備氧化鋅奈奈米柱與其對乙醇氣體感測研究, 2011.