题名

後天T790M突變非小細胞肺癌病患的預後:來自真實世界的數據

并列篇名

The Clinical Outcomes of Patients with Non-small Cell Lung Cancer Harboring Acquired T790M Mutation: The Real-world Data

DOI

10.6342/NTU202102347

作者

張立群

关键词

非小細胞肺癌 ; 表皮生長因子受體基因 ; T790M突變 ; 泰格莎 ; 存活分析 ; Non-small cell lung cancer ; EGFR ; T790M ; osimertinib ; survival

期刊名称

臺灣大學臨床醫學研究所學位論文

卷期/出版年月

2021年

学位类别

碩士

导师

施金元

内容语文

英文

中文摘要

背景:多數具有EGFR基因突變的非小細胞肺癌(non-small cell lung cancer)患者在接受表皮生長因子受體(epidermal growth factor receptor)酪胺酸激酶抑制劑(tyrosine kinase inhibitors)治療後最終仍會產生抗藥性,抗藥性大多來自於EGFR T790M基因突變。Osimertinib(商品名 Tagrisso,泰格莎)常用於治療後天T790M基因突變的非小細胞肺癌患者,但投予osimertinib的時機與病患存活時間的相關性仍有待釐清。 研究方法:在這個回溯性的研究中,我們收集了兩家醫院具有後天T790M基因突變的非小細胞肺癌患者,檢視並分析包括病患的基本資料、EGFR基因突變類型、是否接受osimertinib治療、osimertinib投予的時機、治療成效等臨床資訊。主要結果(primary outcome)定為在從偵測到T790M突變開始計算的不同時段內,比較接受或未接受osimertinib治療病患的累計死亡率。 研究結果:本研究共紀錄了205位具有後天T790M基因突變的非小細胞肺癌患者,其中108位患者進入存活分析。從偵測到T790M突變開始13周內未使用osimertinib的非小細胞肺癌患者其累計死亡率顯著高於接受osimertinib治療的患者 (12.8%和1.7%,p = 0.023)。接受osimertinib治療的84位患者中,從偵測到T790M突變到開始給予osimertinib治療之間天數的中位數為56天,以投予osimertinib在偵測到T790M突變起56天內和56天後分組,疾病無惡化存活期(progression-free survival, PFS)的中位數分別為8.2個月和21.8個月,未達到統計學上的顯著差異(p = 0.063);以osimertinib作為偵測到T790M後第一線或第二線以後治療分組,PFS的中位數分別為10.9個月和9.3個月,兩組相當接近(p = 0.950)。多變項分析中,從血漿循環腫瘤DNA檢驗測得T790M突變的病患,其PFS (風險比率,hazard ratio = 2.79, 95% confidence interval, 1.30-5.95)及存活時間(hazard ratio = 5.27, 95% confidence interval, 2.12-13.15)與由腫瘤組織切片測得T790M突變的病患相比與較短。 結論:對於後天T790M突變的非小細胞肺癌患者,延後投予osimertinib可能會增加患者的死亡率,但以osimertinib作為偵測到T790M突變後第一線或第二線以後的治療,PFS沒有顯著的差異,然而偵測到T790M突變的檢體來源可能是重要的預後因子。

英文摘要

Background: Most patients with EGFR-mutated non-small cell lung cancer (NSCLC) receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy would eventually encounter drug resistance, which is frequently caused by EGFR T790M mutation. Osimertinib is frequently used to treat acquired T790M-mutated NSCLC. The correlation between the timing of osimertinib use and survival benefit remains unclear. Methods: In this retrospective two-center study, we enrolled patients with EGFR-mutated NSCLC harboring acquired T790M mutation. The clinical data were collected and analyzed, including clinical characteristics, types of EGFR mutation, use of osimertinib or not, the timing of osimertinib use, and treatment outcomes. The primary outcome was defined as comparison of cumulative death rate in patients who had and hadn’t received osimertinib within different time interval since T790M mutation detected. Results: A total of 205 patients with EGFR-mutated NSCLC harboring acquired T790M mutation were identified. Among them, 108 patients were included for survival analysis. Patients who hadn’t received osimertinib within 13 weeks since T790M mutation detected had higher cumulative death rate than those who had received osimertinib (12.8% vs. 1.7%,p = 0.023). For patients received osimertinib therapy (n = 84), the median duration from detection of T790M mutation to osimertinib treatment was 56 days. The median progression-free survival (PFS) showed no significant difference between patient groups receiving osimertinib therapy within and beyond 56 days (8.2 vs. 21.8 months, p = 0.063). The median PFS in patients received osimertinib as first subsequent therapy after T790M detected was similar to those as second subsequent therapy or beyond (10.9 vs. 9.3 months, p = 0.950). In multivariate analysis, the patients with T790M mutation detected from circulating tumor DNA had a shorter PFS (hazard ratio = 2.79, 95% confidence interval, 1.30-5.95) and survival (hazard ratio = 5.27, 95% confidence interval, 2.12-13.15) as compared with those who had T790M mutation detected from tumor tissue. Conclusions: For NSCLC patients with acquired EGFR T790M mutation, delay in the administration of osimertinib might increase mortality rate. But there was no significant difference in osimertinib PFS between patients received osimertinib as first subsequent therapy or second subsequent therapy or beyond after T790M detected. The specimen from which T790M mutation detected may indicate of a prognostic value.

主题分类 醫藥衛生 > 社會醫學
醫學院 > 臨床醫學研究所
参考文献
  1. 1. Li S, Li L, Zhu Y, et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer 2014;110:2812-2820.
  2. 2. Barlesi F, Mazieres J, Merlio JP, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016;387:1415-1426.
  3. 3. Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014;311:1998-2006.
  4. 4. Planchard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29 Suppl 4:iv192-iv237.
  5. 5. Hanna N, Johnson D, Temin S, et al. Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 2017;35:3484-3515.
  6. 6. Arcila ME, Oxnard GR, Nafa K, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res 2011;17:1169-1180.
  7. 7. Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 2013;19:2240-2247.
  8. 8. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005;352:786-792.
  9. 9. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008;27:4702-4711.
  10. 10. Hochmair MJ, Buder A, Schwab S, et al. Liquid-Biopsy-Based Identification of EGFR T790M Mutation-Mediated Resistance to Afatinib Treatment in Patients with Advanced EGFR Mutation-Positive NSCLC, and Subsequent Response to Osimertinib. Target Oncol 2019;14:75-83.
  11. 11. Janne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015;372:1689-1699.
  12. 12. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med 2017;376:629-640.
  13. 13. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 2018;378:113-125.
  14. 14. Ettinger DS, Wood DE. Non-Small Cell Lung Cancer. NCCN Clinical Practice Guidelines in Oncology 2021;Version 4.2021.
  15. 15. Papadimitrakopoulou VA, Mok TS, Han JY, et al. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol 2020;31:1536-1544.
  16. 16. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med 2020;382:41-50.
  17. 17. Weng CH, Chen LY, Lin YC, et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 2019;38:455-468.
  18. 18. Su KY, Chen HY, Li KC, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol 2012;30:433-440.
  19. 19. Zheng D, Ye X, Zhang MZ, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep 2016;6:20913.
  20. 20. Chmielecki J, Foo J, Oxnard GR, et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 2011;3:90ra59.
  21. 21. Chouaid C, Dujon C, Do P, et al. Feasibility and clinical impact of re-biopsy in advanced non small-cell lung cancer: a prospective multicenter study in a real-world setting (GFPC study 12-01). Lung Cancer 2014;86:170-173.
  22. 22. Hasegawa T, Sawa T, Futamura Y, et al. Feasibility of Rebiopsy in Non-Small Cell Lung Cancer Treated with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors. Intern Med 2015;54:1977-1980.
  23. 23. Colclough N, Chen K, Johnstrom P, et al. Preclinical Comparison of the Blood-brain barrier Permeability of Osimertinib with Other EGFR TKIs. Clin Cancer Res 2020.
  24. 24. Wu YL, Ahn MJ, Garassino MC, et al. CNS Efficacy of Osimertinib in Patients With T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3). J Clin Oncol 2018;36:2702-2709.
  25. 25. Lindeman NI, Cagle PT, Aisner DL, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol 2018;13:323-358.
  26. 26. Lin CC, Shih JY, Yu CJ, et al. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: a genomic study. Lancet Respir Med 2018;6:107-116.
  27. 27. Schwarzenbach H, Alix-Panabieres C, Muller I, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 2009;15:1032-1038.
  28. 28. Stroun M, Lyautey J, Lederrey C, et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001;313:139-142.
  29. 29. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001;61:1659-1665.
  30. 30. Boysen Fynboe Ebert E, McCulloch T, Holmskov Hansen K, et al. Clearing of circulating tumour DNA predicts clinical response to osimertinib in EGFR mutated lung cancer patients. Lung Cancer 2020;143:67-72.