参考文献
|
-
[1] J. Joo, B. Y. Chow, and J. M. Jacobson, “Nanoscale patterning on insulating substrates by critical energy electron beam lithography,” Nano Letters, vol. 6, no. 9, pp. 2021–2025, 2006.
連結:
-
[3] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang,“Nanoplasmonics: Classical down to the nanometer scale,” Nano Letters, vol. 12, no. 3, pp. 1683–1689, 2012.
連結:
-
[4] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-10-nm regime,” Science, vol. 306, no. 5704, pp. 2057–2060, 2004.
連結:
-
[5] R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,”Nano Letters, vol. 12, no. 4, pp. 2158–64, 2012.
連結:
-
[6] D. R. Ward, F. Huser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nature nanotechnology, vol. 5, no. 10, pp. 732–736, 2010.
連結:
-
[7] U. Y. Lau, S. S. Saxer, J. Lee, E. Bat, and H. D. Maynard, “Direct write protein patterns for multiplexed cytokine detection from live cells using electron beam lithography,”ACS Nano, vol. 10, no. 1, pp. 723–9, 2016.
連結:
-
[9] T. H. P. Chang, “Proximity effect in electron‐beam lithography,” Journal of Vacuum Science and Technology, vol. 12, no. 6, pp. 1271–1275, 1975.
連結:
-
[10] R. J. Bojko and B. J. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 8, no. 6, p. 1909, Nov. 1990.
連結:
-
[12] L. Stevens, R. Jonckheere, E. Froyen, S. Decoutere, and D. Lanneer, “Determination of the proximity parameters in electron beam lithography using doughnut-structures,”Microelectronic Engineering, vol. 5, no. 1-4, pp. 141–150, Dec. 1986.
連結:
-
[13] W. Patrick and P. Vettiger, “Optimization of the proximity parameters for the electron beam exposure of nanometer gate-length GaAs metal–semiconductor field effect transistors,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 6, no. 6, p. 2037, Nov. 1988.
連結:
-
[14] E. Boere, E. van der Drift, J. Romijn, and B. Rousseeuw, “Experimental study on proximity effects in high voltage e-beam lithography,” Microelectronic Engineering, vol. 11, no. 1-4, pp. 351–354, Apr. 1990.
連結:
-
[15] Z. Cui, “Monte carlo simulation of electron beam lithography on topographical substrates,” Microelectronic Engineering, vol. 41-42, pp. 175–178, Mar. 1998.
連結:
-
[16] J. Zhou and X. Yang, “Monte carlo simulation of process parameters in electron beam lithography for thick resist patterning,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 24, no. 3, p. 1202, 2006.
連結:
-
[17] C. A. Mack, “Three-dimensional electron-beam lithography simulation,” in Emerging Lithographic Technologies, D. E. Seeger, Ed., SPIE, Jul. 1997.
連結:
-
[18] P. Vermeulen, R. Jonckheere, and L. Vandenhove, “Proximity-effect correction in electron-beam lithography,” Journal of Vacuum Science & Technology B, vol. 7, no. 6, pp. 1556–1560, 1989.
連結:
-
[19] M. Osawa, K. Takahashi, M. Sato, and H. Arimoto, “Proximity effect correction using pattern shape modification and area density map for electron-beam projection lithography,” Journal of Vacuum Science & Technology B, vol. 19, no. 6, pp. 2483–2487, 2001.
連結:
-
[20] L. E. Ocola, D. J. Gosztola, and D. Rosenmann, “Automated geometry assisted proximity effect correction for electron beam direct write nanolithography,” Journal of Vacuum Science & Technology B, vol. 33, no. 6, 06FD02–06FD02, 2015.
連結:
-
[21] L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” Journal of Vacuum Science & Technology B, vol. 24, no. 6, pp. 3061–3065, 2006.
連結:
-
[22] M. A. Mohammad, T. Fito, J. Chen, S. Buswell, M. Aktary, M. Stepanova, and S. K. Dew, “Systematic study of the interdependence of exposure and development conditions and kinetic modelling for optimizing low-energy electron beam nanolithography,”Microelectronic Engineering, vol. 87, no. 5-8, pp. 1104–1107, 2010.
連結:
-
[23] M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” Journal of Vacuum Science & Technology B, vol. 28, no. 1, pp. L1–L4, 2010.
連結:
-
[24] F. H. Dill, A. R. Neureuther, J. A. Tuttle, and E. J. Walker, “Modeling projection printing of positive photoresists,” IEEE Transactions on Electron Devices, vol. 22, no. 7, pp. 456–464, 1975.
連結:
-
[25] Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, and N. Nomura, “Three-dimensional resist process simulator peace (photo and electron beam lithography analyzing computer engineering system),” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 6, pp. 802–807, 1991.
連結:
-
[26] M. Kotera, K. Yagura, and H. Niu, “Dependence of linewidth and its edge roughness on electron beam exposure dose,” Journal of Vacuum Science & Technology B, vol. 23, no. 6, pp. 2775–2779, 2005.
連結:
-
[27] Q. Dai, R. Guo, S. Y. Lee, J. Choi, S. H. Lee, I. K. Shin, C. U. Jeon, B. G. Kim, and H. K. Cho, “A fast path-based method for 3-d resist development simulation,”Microelectronic Engineering, vol. 127, pp. 86–96, 2014.
連結:
-
[29] S. A. Rishton and D. P. Kern, “Point exposure distribution measurements for proximity correction in electron beam lithography on a sub-100 nm scale,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 5, no. 1, p. 135, Jan. 1987.
連結:
-
[32] T. Nishida, M. Notomi, R. Iga, and T. Tamamura, “Quantum wire fabrication by e-beam elithography using high-resolution and high-sensitivity e-beam resist ZEP-520,” Japanese Journal of Applied Physics, vol. 31, no. Part 1, No. 12B, pp. 4508–4514, Dec. 1992.
連結:
-
[33] K. Koshelev, M. A. Mohammad, T. Fito, K. L. Westra, S. K. Dew, and M. Stepanova,“Comparison between ZEP and PMMA resists for nanoscale electron beam lithography experimentally and by numerical modeling,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 29, no. 6, 06F306, Nov. 2011.
連結:
-
[35] W. Hu, G. Bernstein, K. Sarveswaran, and M. Lieberman, “Low temperature development of PMMA for sub-10-nm electron beam lithography,” in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., IEEE, 2003.
連結:
-
[36] A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on HSQ: State of the art,” Nanotechnology, vol. 20, no. 29, p. 292 001, Jul. 2009.
連結:
-
[39] M. A. Mohammad, M. Muhammad, S. K. Dew, and M. Stepanova, “Fundamentals of electron beam exposure and development,” in Nanofabrication, Springer Vienna, Oct. 2011, pp. 11–41.
連結:
-
[40] J. S. Greeneich, “Time evolution of developed contours in poly-(methyl methacrylate) electron resist,” Journal of Applied Physics, vol. 45, no. 12, pp. 5264–5268, Dec. 1974.
連結:
-
[41] L. Masaro and X. X. Zhu, “Physical models of diffusion for polymer solutions, gels and solids,” Progress in Polymer Science, vol. 24, no. 5, pp. 731–775, Aug. 1999.
連結:
-
[43] T. Okada, J. Fujimori, M. Aida, M. Fujimura, T. Yoshizawa, M. Katsumura, and T. Iida, “Enhanced resolution and groove-width simulation in cold development of zep520a,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 29, no. 2, p. 021 604, Mar. 2011.
連結:
-
[44] P. G. De Gennes, “Dynamics of entangled polymer solutions. i. the rouse model,”Macromolecules, vol. 9, no. 4, pp. 587–593, 1976.
連結:
-
[46] N. Nemoto, T. Kojima, T. Inoue, M. Kishine, T. Hirayama, and M. Kurata, “Self diffusion of polymers in the concentrated regime. part 2. self diffusion and tracerdiffusion coefficient and viscosity of concentrated solutions of linear polystyrenes in dibutyl phthalate,” Macromolecules, vol. 22, no. 9, pp. 3793–3798, 1989.
連結:
-
[48] I. Nakanishi and K. Yamaguchi, “A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure,” Journal of Physics of the Earth, vol. 34, no. 2, pp. 195–201, 1986.
連結:
-
[49] T. J. Moser, “Shortest path calculation of seismic rays,” Geophysics, vol. 56, no. 1, pp. 59–67, 1991.
連結:
-
[50] M. A. Finney, “Fire growth using minimum travel time methods,” Canadian Journal of Forest Research, vol. 32, no. 8, pp. 1420–1424, 2002.
連結:
-
[51] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.
連結:
-
[52] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,” Journal of the ACM, vol. 34, no. 3, pp. 596–615, 1987.
連結:
-
[53] M. Barbehenn, “A note on the complexity of dijkstra's algorithm for graphs with weighted vertices,” IEEE Transactions on Computers, vol. 47, no. 2, pp. 263–263, 1998.
連結:
-
[54] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algorithms: Theory and experimental evaluation,” Mathematical Programming, vol. 73, no. 2, pp. 129–174, 1996.
連結:
-
[57] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), IEEE, 1998.
連結:
-
[58] T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112–117, 2005.
連結:
-
[59] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization method for constrained optimization problems,” Intelligent Technologies–Theory and Application: New Trends in Intelligent Technologies, vol. 76, no. 1, pp. 214–220, 2002.
連結:
-
[60] M. J. D. Powell, “On trust region methods for unconstrained minimization without derivatives,” Mathematical Programming, vol. 97, no. 3, pp. 605–623, Aug. 2003.
連結:
-
[61] M. J. D. Powell, A view of algorithms for optimization without derivatives, 5. 2007, vol. 43, pp. 1–12.
連結:
-
[62] M. J. D. Powell, A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. Springer Netherlands, 1994, pp. 51–67.
連結:
-
[63] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), IEEE, 2000.
連結:
-
[65] M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photonics, vol. 6,no. 11, pp. 737–748, 2012.
連結:
-
[66] S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd,“Quantifying the impact of proximity error correction on plasmonic metasurfaces,”Optical Materials Express, vol. 5, no. 12, pp. 2798–2803, 2015.
連結:
-
[67] P. G. de Gennes, “Reptation of a polymer chain in the presence of fixed obstacles,”The Journal of Chemical Physics, vol. 55, no. 2, pp. 572–579, Jul. 1971.
連結:
-
[68] K. Kremer and G. S. Grest, “Dynamics of entangled linear polymer melts: A molecular-dynamics simulation,” Journal of Chemical Physics, vol. 92, no. 8, pp. 5057–5057, 1990.
連結:
-
[69] T. Yamaguchi, H. Namatsu, M. Nagase, K. Yamazaki, and K. Kurihara, “Nanometerscale linewidth fluctuations caused by polymer aggregates in resist films,” Applied Physics Letters, vol. 71, no. 16, pp. 2388–2390, Oct. 1997.
連結:
-
[70] L. E. Ocola, “Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography,” Journal of Vacuum Science & Technology B, vol. 27, no. 6, pp. 2569–2571, 2009.
連結:
-
[71] A. Starikov, “Use of a single size square serif for variable print bias compensation in microlithography: Method, design, and practice,” Proc. SPIE, vol. 1088, 1989.
連結:
-
[72] M. Parikh, “Self‐consistent proximity effect correction technique for resist exposure (spectre),” Journal of Vacuum Science and Technology, vol. 15, no. 3, pp. 931–933, 1978.
連結:
-
[74] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, http://www.scipy.org/, 2001.
連結:
-
[2] J. C. van Oven, F. Berwald, K. K. Berggren, P. Kruit, and C. W. Hagen, “Electron-beam induced deposition of 3-nm-half-pitch patterns on bulk si,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 29, no. 6, 06F305–06F305, Nov. 2011.
-
[8] B. Wu and A. R. Neureuther, “Energy deposition and transfer in electron-beam lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 19, no. 6, p. 2508, 2001.
-
[11] X. Huang, G. Bazán, and G. H. Bernstein, “New technique for computation and challenges for electron-beam lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 11, no. 6, p. 2565, Nov. 1993.
-
[28] A. Hasegawa, R.-I. Kang, and K. Shono, “Electron beam direct lithography system using the SEM,” Electronics and Communications in Japan (Part II: Electronics), vol. 75, no. 11, pp. 51–61, 1992.
-
[30] H. Yang, L. Fan, A. Jin, Q. Luo, C. Gu, and Z. Cui, “Low-energy electron-beam lithography of ZEP-520 positive resist,” in 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, Jan. 2006.
-
[31] Y. H. Lee, R. Browning, N. Maluf, G. Owen, and R. F. W. Pease, “Low voltage alternative for electron beam lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, no. 6, p. 3094, Nov. 1992.
-
[34] W. ( Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron-beam lithography using cold development of poly(methylmethacrylate),” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, no. 4, p. 1711, 2004.
-
[37] M. J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, and S. A. MacDonald, “Low stress development of poly(methylmethacrylate) for high aspect ratio structures,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, no. 6, p. 2937, 2002.
-
[38] M. Stepanova, T. Fito, Z. Szabo, K. Alti, A. P. Adeyenuwo, K. Koshelev, M. Aktary, and S. K. Dew, “Simulation of electron beam lithography of nanostructures,”Journal of Vacuum Science & Technology B, vol. 28, no. 6, pp. C6c48–C6c57, 2010.
-
[42] B. A. Miller-Chou and J. L. Koenig, “A review of polymer dissolution,” Progress in Polymer Science, vol. 28, no. 8, pp. 1223–1270, Aug. 2003.
-
[45] F. Lange, P. Judeinstein, C. Franz, B. Hartmann-Azanza, S. Ok, M. Steinhart, and K. Saalwächter, “Large-scale diffusion of entangled polymers along nanochannels,”ACS Macro Letters, vol. 4, no. 5, pp. 561–565, 2015.
-
[47] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in 1995 IEEE International Conference on Neural Networks: Proceedings, vol. 4, IEEE, 1995, pp. 1942–1948.
-
[55] O. Kramer, D. E. Ciaurri, and S. Koziel, “Derivative-free optimization,” in Computational Optimization, Methods and Algorithms, S. Koziel and X.-S. Yang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 61–83.
-
[56] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics, Jan. 2009, pp. 276–276.
-
[64] C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Applied Physics B, vol. 84, no. 1, pp. 219–227, 2006.
-
[73] M. J. D. Powell, Advances in Optimization and Numerical Analysis, S. Gomez and J.-P. Hennart, Eds. Dordrecht: Springer Netherlands, 1994, ch. 51-67, pp. 51–67.
-
[75] S.-Y. Lee, J. C. Jacob, C. Chen, J. A. McMillan, and N. C. MacDonald, “Proximity effect correction in electron‐beam lithography: A hierarchical rule‐based scheme—pyramid,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 6, pp. 3048–3053, 1991.
-
[76] S.-Y. Lee and J. Laddha, “Adaptive selection of control points for improving accuracy and speed of proximity effect correction,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 16, no. 6, pp. 3269–3274, 1998.
|