题名

1,3-及1,4-雙取代咔唑單體與矽苯衍生物共聚高分子之合成及其於高分子有機發光二極體之應用

并列篇名

Synthesis and Characterization of Polymers with 1,3- and 1,4-Bicarbazole-Substituted Arylsilane Derivatives as Host for Polymer Light Emitting Diodes

DOI

10.6342/NTU201701580

作者

潘韵文

关键词

高分子發光二極體 ; 高三重態能隙 ; 咔唑 ; 矽苯衍生物 ; 鈴木-宮浦反應 ; PLED ; high triplet energy ; carbazole ; mCP ; arylsilane ; Suzuki coupling

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

謝國煌

内容语文

繁體中文

中文摘要

本研究乃利用N,N’-dicarbazolyl-2,5-benzene (mCP)及N,N’-dicarbazolyl-3,6- benzene (pCP)雙取代咔唑單體作為前驅物,並引入矽苯衍生物經由鈴木-宮浦 (Suzuki-Miyaura) 偶聯反應進行一系列共聚高分子之合成。目前被廣泛使用之磷光主發光體材料幾乎皆含有咔唑 (carbazole)基團,因咔唑擁有良好的電洞傳遞性質與較高的三重態能階。藉由矽原子sp3混成軌域之四面體結構可將共聚物當中之苯環間隔開來,進而中斷高分子主鏈之共軛效應,使高分子之三重態能隙提高並具有良好的熱穩定性質,又於矽苯衍生物側鏈引入巨大的取代基團能抑制分子之相互堆疊,避免客發光體因自我聚集 (self-aggregation) 造成濃度焠熄 (concentration quench) 的現象。 由於多苯環結構剛硬且具有強π-π作用力,經熱示差掃描卡計及熱重分析儀之分析,共聚高分子皆有高玻璃轉移溫度與熱裂解溫度,且透過能量轉移實驗,其高三重態能隙亦可使能量有效傳遞至客發光體,此外,由電化學研究之結果顯示,高分子 mCP-SiCz 與 pCP-SiCz 擁有較高之 HOMO 能階,良好的電洞傳遞性質進而提升高分子發光二極體 (Polymer Light-Emitting Diode, PLED) 之效率。 藍色磷光元件以mCP-SiCz混摻25 %之FIrpic與40 %之Si2OXD有最佳表現,其元件結構為ITO / PEDOT:PSS / mCP-SiCz:FIrpic 20 %:Si2OXD 40 % / Mg / Ag,最大亮度為5158 cd/m2,最高效率達8.32 cd/A。

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. 2. J. H. Burroughes, et al., Nature, 1990, 347, 539-541.
    連結:
  2. 4. Y. S. Wu, S. W. Hwang, H. H. Chen, M. T. Lee, W. J. Shen and C. H. Chen, Thin Solid Films, 2005, 488, 265-269. 

    連結:
  3. 7. P. Pringsheim, Fluorescence and Phosphorescence, Interscience Publishers, New York, 1949.
    連結:
  4. 9. M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, VCH Publishers, New York, 1995. 

    連結:
  5. 14. T. Ishida, H. Kobayashi, Y. Nakato, Journal of Applied Physics, 1993, 73, 4344-4350.
    連結:
  6. 16. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Applied Physics A,
1999, 68, 447-450. 

    連結:
  7. 23. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Transactions on Electron Devices, 1997, 44, 1245-1248.
    連結:
  8. 29. Y. Shirota, K. Okumoto and H. Inada, Synthetic Metals, 2000, 111–112, 387-391.
    連結:
  9. 36. J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama and K. Nagai, Japanese Journal of Applied Physics, 1993, 32, L917-L920. 

    連結:
  10. 40. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade and S. R. Forrest, Organic Electronics, 2003, 4, 77-87.
    連結:
  11. 44. (a) X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, Advanced Materials, 2002, 14, 581-585. (b) H. Sasabe, Y. J. Pu, K. Nakayama and J. Kido, Chemical Communications, 2009, 43, 6655-6657. (c) S. Kwon, K. R. Wee, J. W. Kim and S. O. Kang, Applied Physics Letters, 2010, 97, 023309. (d) J. He, H. Liu, Y. Dai, X. Ou, J. Wang, X. Tao, X. Zhang, P. Wang and D. Ma, Journal of Physical Chemistry C, 2009, 113, 6761-6767. (e) M. H. Tsai, Y. H. Hong, C. H. Chang, H. C. Su, C. C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius and C. P. Hsu, Advanced Materials, 2007, 19, 862-866. (f) D. Tanaka, Y. Agata, T. Takeda, S. Watanabe and J. Kido, Japanese Journal of Applied Physics, 2007, 46, L117-L119.
    連結:
  12. 49. S. Lamansjy, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy and M. E. Thompson, Journal of Applied Physics, 2002, 92, 1570-1575.
    連結:
  13. 54. (a) V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest, and M. E. Thompson, New Journal of Chemistry, 2002, 26, 1171-1178. (b) R. J. Holmes, S.R. Forrest, Y.J. Tung, R. C. Kwong, J. J. Brown and S. Garon, Applied Physics Letters, 2003, 82, 2422-2424.
    連結:
  14. 56. S. Kotha, K. Lahiri and D. Kashinath, Tetrahedron, 2002, 58, 9633-9695.
    連結:
  15. 1. C. W. Tang and S. A. VanSlyke, Applied Physics Letters, 1987, 51, 913-915.
  16. 3. T. H. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, and C. H. Chen, Applied Physics Letters, 2004, 85, 4304-4306.
  17. 5. 陳金鑫、黃孝文, OLED夢幻顯示器, 五南圖書出版公司, 2007.
  18. 6. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich and M. A. Baldo, Applied Physics Letters, 2001, 79, 2082-2084.
  19. 8. X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, Advanced Function Materials, 2003, 13, 439-444.
  20. 10. S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe and C. Adachi, Advanced Functional Materials, 2013, 23, 3386–3397.
  21. 11. S. P. McGlynn, T. Azumi and M. Kasha, The Journal of Chemical Physics, 1964, 40, 507-515.
  22. 12. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Applied Physics Letters, 2001, 79, 156–158. 

  23. 13. C. Adachi, M. A. Baldo, S. R. Forrest and M. E. Thompson, Applied Physics Letters, 2000, 77, 904-906.
  24. 15. J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik,
 W. J. Feast and F. Cacialli, Journal of Applied Physics, 1998, 84, 6859-6870. 

  25. 17. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, Journal of Applied Physics, 1999, 86, 1688-1692. 

  26. 18. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A .Karbach, S. Kirchmeyer and S. Thurm, Synthetic Metals, 2000, 111, 139-143. 

  27. 19. (a) Y. Shirota, Y. Kuwabara, H. Inada and H. Takahashi, Applied Physics Letters, 1994, 65, 807-809. (b) Y. Hamada, N. Matsusue, H. Kanno, H. Fujii, T. Tsujioka, and H. Takahashi, Japanese Journal of Applied Physics, 2001, 40, L753-L755. (c) D. Heithecker, A. Kammoun, T. Dobbertin, T. Tiedl, E. Becker, D. Metzdorf, D. Schneider, H. H. Johannes and W. Kowalsky, Applied Physics Letters, 2003, 82, 4178-4180. 

  28. 20. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R. Wehrmann, Synthetic Metals, 2000, 111–112, 139-143.
  29. 21. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Advanced Materials, 2000, 12, 481-494.
  30. 22. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Applied Physics Letters, 1999, 75, 1679-1681.
  31. 24. L. S. Hung, C. W. Tang and M. G. Mason, Applied Physics Letters, 1997, 70, 152-154.
  32. 25. R. Deschenaux, M. Schweissguth and A. M. Levelut, Chemical Communications, 1996, 1275-1276.
  33. 26. S. Tokito, H. Tanaka, A. Okada and Y. Taga, Applied Physics Letters, 1996, 69, 878-880.
  34. 27. S. A. Van Slyke, C. H. Chen and C. W. Tang, Applied Physics Letters, 1996, 69, 2160-2162.
  35. 28. H. Murata, C. D. Merritt, H. Inada, Y. Shirota and Z. H. Kafafi, Applied Physics Letters, 1999, 75, 3252-3254.
  36. 30. C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters, 1989, 55, 1489-1491.
  37. 31. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Advanced Materials, 1995, 7, 551-554.
  38. 32. C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters, 1990, 56, 799-801. 

  39. 33. B. Schulz, B. Stiller, T. Zetzsche, G. Knochenhauer, R. Dietel and L. Brehmer, Chemistry of Materials, 1995, 7, 1041-1044.
  40. 34. Y. Cao, I. D. Parker, G. Yu, C. Zhang and A. J. Heeger, Nature, 1999, 397, 414-417.
  41. 35. S. Hoshino, K. Ebata and K. Furukawa, Journal of Applied Physics, 2000, 87, 1968-1973. 

  42. 37. R. Fink, Y. Heischkel, M. Thelakkat, H. W. Schmidt, C. Jonda and M. Huppauff, Chemistry of Materials, 1998, 10, 3620-3625.
  43. 38. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Applied Physics Letters, 1993, 63, 2627-2629.
  44. 39. T. D. Anthopoulos, J. P. J. Markham, E. B. Namdas, I. D. W. Samuel, S. C. Lo and P. L. Burn, Applied Physics Letters, 2003, 82, 4824-4826.
  45. 41. S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata and I. D. W. Samuel, Advanced Materials, 2002, 14, 975-979.
  46. 42. (a) M. Jandke, P. Strohriegl, S. Berleb, E. Werner and W. Brütting, 
Macro- molecules, 1998, 31, 6434-6443. (b) J. Bettenhausen, M. Greczmiel, M .Jandke and P. Strohriegl, Synthetic Metals, 1997, 91, 223-228.
  47. 43. (a) D. F. O'Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Applied Physics Letters, 1999, 74, 442-444. (b) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Applied Physics Letters, 1999, 75, 4-6. (c) V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D'Andrade and S. R. Forrest, Organic Electronics, 2003, 4, 77-87. 

  48. 45. G. T. Lei, L. D. Wang, L. Duan, J. H. Wang and Y. Qiu, Synthetic Metals, 2004, 144, 249-252.
  49. 46. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest and M. E. Thompson, Chemistry of Materials, 2004, 16, 4743-4747.
  50. 47. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Advanced Materials, 2005, 17, 285-289.
  51. 48. D. Sun, Z. Yang, X. Sun, H. Li, Z. Ren, J. Liu, D. Ma and S. Yan, Polymer Chemistry, 2014, 5, 5046-5052.
  52. 50. X. H. Yang, F. Jaiser, S. Klinger and D. Neher, Applied Physics Letters, 2006, 88, 021107.
  53. 51. C. Adachi, et al., Applied Physics Letters, 2001, 78, 1622-1624.
  54. 52. M.A. Baldo, et al., Applied Physics Letters, 1999, 75, 4-6.
  55. 53. C. Adachi, et al., Applied Physics Letters, 2001, 79, 2082-2084.
  56. 55. C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Chemical Soceity Reviews, 2014, 43, 3525–3550.
  57. 57. W. Zhang, P. Lu, Z. Wang and Y. Ma, Polymer Chemistry, 2013, 51, 1950-1955.
  58. 58. R. Gedye, F. Smith, K. Westaway, H. Ali and L. Baldisera, Tetrahedron Letter, 1986, 27, 279–282.
  59. 59. J. L. Bredas, R. Silbey, D. S. Boudreaux and R. R. Chance, J. Am. Chem. Soc., 1983, 105, 6555-6559.
  60. 60. C. Xu, J. Zhao, M. Wang, Z. Wang, C. Cui, Y. Kong and X. Zhang, Electrochimica Acta, 2012, 75, 28–34.
  61. 61. M. K. Leung, W. H. Yang, C. N. Chuang, J. H. Lee, C. F. Lin, M. K. Wei and Y. H. Liu, Organic Letters, 2012, 14, 4986-4989.