题名

中文量詞處理歷程之神經機制

并列篇名

Neural Correlates of Chinese Classifiers Processing

DOI

10.6342/NTU201701583

作者

郭楚萱

关键词

中文 ; 量詞 ; 功能性磁振造影 ; 功能性連結 ; 語意處理 ; Chinese ; classifier ; fMRI ; functional connectivity ; semantic processing

期刊名称

國立臺灣大學心理學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

周泰立

内容语文

英文

中文摘要

中文量詞與其後所接之名詞,隨著不同的組合方式而產生不同程度的語意共通合法性。過去研究將中文量詞區分為可數量詞 (count classifiers) 和不可數量詞 (mass classifiers) 進行探討,然而卻鮮少探討成人於量詞違例下語意處理之神經機制。本研究以功能性磁振造影 (functional magnetic resonance imaging, fMRI),探討不同類別量詞違例情況下腦區活化之差異,同時也以心理生理交互作用分析 (psychophysiological interactions) 探討相關腦區間的功能性連結。本研究共有 29 位中文成人母語參與者,進行中文量詞的語意合法性判斷作業,刺激材料分為三種類型:類別內量詞違例 (intra-classifier, 例如:可數量詞之內或不可數量詞之內的錯誤置換)、類別間量詞違例 (inter-classifier, 例如:可數量詞與不可數量詞之間的錯誤置換),以及正確一致的量詞組合。腦造影的結果顯示,類別間量詞違例相較於類別內量詞違例,有較多的雙側額下迴 (inferior frontal gyri) 活化,推論在類別間量詞違例的情況下,量詞與其後所接之名詞的語意共通合法性較少,使得搜尋共通語意屬性時需較多的腦區活化。此外由功能性連結結果發現,處理類別間量詞違例時,雙側額下迴都會顯著地連結到中側前額葉 (medial frontal gyrus),推論由於激發較多無相關的語意屬性,因此需要進行抑制無關屬性以達到正確之語意判斷。最後,由功能性連結結果發現,右側額下迴顯著地連結到左側顳中迴 (middle temporal gyrus),推論在不同類別間量詞置換的情況,需要較多的語意提取與選擇歷程。綜上述結果,雙側額下迴、中側前額葉以及左側顳中迴於中文量詞語意處理網絡中,扮演著語意屬性的搜尋,抑制,提取與選擇的角色。

英文摘要

In Chinese, classifiers have varying degrees of overlapping semantic features with their corresponding nouns. Count classifiers, which individualize nouns, are semantically distinct from mass classifiers, which are general measurements of nouns. The present functional magnetic resonance imaging study aimed to clarify the neural correlates of processing erroneous count versus mass classifier use during reading comprehension. Twenty-nine native Chinese speakers made semantic congruency judgments on congruent, intra-classifier (IA) violated, and inter-classifier (IE) violated phrases. The IA and IE violations involved changing a correct classifier to an incorrect classifier of the same category (e.g. count-count or mass-mass) and of a different category (e.g. count-mass or mass-count), respectively. Functional connectivity as revealed by psychophysiological interactions analysis helped clarify whether there would be condition-specific connectivity between brain regions during semantic judgments. The IE violation condition produced more activation in the bilateral inferior frontal gyri (IFG) when contrasted with the IA violation condition, suggesting that searching for overlapping features may result in increased demand on semantic processing when dealing with between-category classifier errors. The bilateral IFG were functionally connected to the medial frontal gyrus, suggesting a certain degree of inhibition and interference resolution of irrelevant semantic features between an incorrect classifier and noun. The right IFG was also functionally connected to the left middle temporal gyrus (MTG), suggesting a need for lexical retrieval and selection of semantic features. Overall, these results suggest that the bilateral IFG functions as part of a larger semantic network involving the medial frontal gyrus and the left MTG during the processing of Chinese classifiers.

主题分类 醫藥衛生 > 醫藥總論
理學院 > 心理學系
社會科學 > 心理學
参考文献
  1. Ahrens, K. (1994). Classifier production in normals and aphasics. Journal of Chinese Linguistics, 22, 203-248.
    連結:
  2. Allan, K. (1977). Classifiers. Language, 53, 285-311.
    連結:
  3. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796. doi:10.1093/cercor/bhp055
    連結:
  4. Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport, 9, 3735-3739.
    連結:
  5. Chee, M. W., O’Craven, K. M., Bergida, R., Rosen, B. R., & Savoy, R. L. (1999). Auditory and visual word processing studied with fMRI. Human Brain Mapping, 7, 15–28.
    連結:
  6. Chen, P.-J., Gau, S. S.-F., Lee, S.-H., & Chou, T.-L. (2016). Differences in age-dependent neural correlates of semantic processing between youths with autism spectrum disorder and typically developing youths. Autism Research, 9, 1263-1273. doi:10.1002/aur.1616
    連結:
  7. Chien, Y.-C., Lust, B., & Chiang, C.-P. (2003). Chinese children’s comprehension of count-classifiers and mass-classifiers. Journal of East Asian Linguistics, 12, 91-120. doi:10.1023/A:1022401006521
    連結:
  8. Chou, T.-L., Booth, J. R., Burman, D. D., Bitan, T., Bigio, J. D., Lu, D., & Cone, N. E. (2006). Developmental changes in the neural correlates of semantic processing. NeuroImage, 29, 1141-1149. doi:10.1016/j.neuroimage.2005.09.064
    連結:
  9. Chou, T.-L., Lee, S.-H., Hung, S.-M., & Chen, H.-C. (2012). The role of the inferior frontal gyrus in processing Chinese classifiers. Neuropsychologia, 50, 1408-1415. doi:10.1016/j.neuropsychologia.2012.02.025
    連結:
  10. Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I.,...Jefferies, E. (2016). Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. NeuroImage, 137, 165-177. doi:10.1016/j.neuroimage.2016.05.051
    連結:
  11. De Carli, D., Garreffa, G., Colonnese, C., Giulietti, G., Labruna, L., Briselli, E.,...Maraviqilia, B. (2007). Identification of activated regions during a language task. Magnetic Resonance Imaging, 25, 933-938. doi:10.1016/j.mri.2007.03.031
    連結:
  12. de Zubicaray, D. I., Zelaya, F. O., Andrew, C., Williams, S. C., & Bullmore, E. T. (2000). Cerebral regions associated with verbal response initiation, suppression, and strategy use. Neuropsychologia, 38, 1292-1304. doi:10.1016/S0028-3932(00)00026-9
    連結:
  13. Erbaugh, M. S. (1986). Taking stock: The development of Chinese noun classifiers historically and in young children. In C. Craig (Ed.), Proceedings of a symposium on categorization and noun classification (pp. 399-456). Philadelphia, PA: J. Benjamins.
    連結:
  14. Federmeier, K. D., & Kutas, M. (1999). A rose by any other name: Long-term memory structure and sentence processing. Journal of Memory and Language, 41, 469-495. doi:10.1006/jmla.1999.2660
    連結:
  15. Fiebach, C. J., Friederici, A. D., Müller, K., & Yves von Cramon, D. (2002). fMRI evidence for dual routes to the mental lexicon in visual word recognition. Journal of Cognitive Neuroscience, 14, 11-23. doi:10.1162/089892902317205285
    連結:
  16. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218-229. doi:10.1006/nimg.1997.0291
    連結:
  17. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273-1302.
    連結:
  18. Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: The importance of hemodynamic deconvolution. NeuroImage, 19, 200-207.
    連結:
  19. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393-402. doi:10.1038/nrn2113
    連結:
  20. Huang, Y. V., & Chen, C.-Y. D. (2009). Chinese children’s acquisition of classifiers revisited. Journal of Chinese Language Teaching, 6(1), 1-38.
    連結:
  21. Incisa della Rocchetta, A., & Milner, B. (1993). Strategic search and retrieval inhibition: The role of the frontal lobes. Neuropsychologia, 31, 503-524. doi:10.1016/0028-3932(93)90049-6
    連結:
  22. Jackson, R. L., Hoffman, P., Pobric, G., & Lambon Ralph, M. A. (2016). The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions. Journal of Neuroscience, 36, 1490-1501. doi:10.1523/JNEUROSCI.2999-15.2016
    連結:
  23. Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49, 611-625. doi:10.1016/j.cortex.2012.10.008
    連結:
  24. Krieger-Redwood, K., Teige, C., Davey, J., Hymers, M., & Jefferies, E. (2015). Conceptual control across modalities: Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia, 76, 92-107. doi:10.1016/j.neuropsychologia.2015.02.030
    連結:
  25. Kutas, M., & Hillyard, S. A. (1980a). Event-related brain potentials to semantically inappropriate and surprisingly large words. Biological Psychology, 11, 99-116. doi:10.1016/0301-0511(80)90046-0
    連結:
  26. Kutas, M., & Hillyard, S. A. (1980b). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203-205. doi:10.1126/science.7350657
    連結:
  27. Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expecting and semantic association. Nature, 307, 161-163. doi:10.1038/307161a0
    連結:
  28. Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9, 920-933. doi:10.1038/nrn2532
    連結:
  29. Lehrer, A. (1986). English classifier constructions. Lingua, 68, 109-148. doi:10.1016/0024-3841(86)90001-X
    連結:
  30. Liakakis, G., Nickel, J., Seitz, R. J. (2011). Diversity of the inferior frontal gyrus--a meta-analysis of neuroimaging studies. Behavioural Brain Research, 225, 341-347. doi:10.1016/j.bbr.2011.06.022
    連結:
  31. Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25, 1824-1850. doi:10.1162/jocn_a_00442
    連結:
  32. Peters, G. J., David, C. N., Marcus, M. D., & Smith, D. M. (2013). The medial prefrontal cortex is critical for memory retrieval and resolving interference. Learning & Memory, 20, 201-209. doi:10.1101/lm.029249.112
    連結:
  33. Qian, Z., & Garnsey, S. (2016). An ERP study of the processing of Mandarin classifiers. In H. Tao (Ed.), Integrating Chinese linguistic research and language teaching and learning (pp. 59-80). Los Angeles, CA: John Benjamins.
    連結:
  34. Schuster, S., Hawelka, S., Hutzler, F., Kronbichler, M., & Richlan, F. (2016). Words in context: The effects of length, frequency, and predictability on brain responses during natural reading. Cerebral Cortex, 26, 3889-3904. doi:10.1093/cercor/bhw194
    連結:
  35. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E.,...Gore, J. C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences USA, 95, 2636–2641. doi:10.1073/pnas.95.5.2636
    連結:
  36. Taylor, W. L. (1953). “Cloze Procedure”: A new tool for measuring readability. Journalism & Mass Communication Quarterly, 30, 415-433
    連結:
  37. Wang, S., Zhu, Z., Zhang, J. X., Wang, Z., Xiao, Z., Xiang, H., & Chen, H.-C. (2008). Broca’s area plays a role in syntactic processing during Chinese reading comprehension. Neuropsychologia, 46, 1371–1378. doi:10.1016/j.neuropsychologia.2007.12.020
    連結:
  38. Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry M. L.,...Gorno-Tempini, M. L. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72, 397-403. doi:10.1016/j.neuron.2011.09.014
    連結:
  39. Wu, C.-Y., Ho, M.-H. R., & Chen, S.-H. A. (2009). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. NeuroImage, 63, 381-391. doi:10.1016/j.neuroimage.2012.06.047
    連結:
  40. Bornkessel-Schlesewsky, I. D., & Friederici, A. D. (2007). Neuroimaging studies of sentence and discourse comprehension. In M. G. Gaskell & G. Altmann (Eds.), The oxford handbook of psycholinguistics (pp. 407-424). New York, NY: Oxford University Press.
  41. Chen, H.-C. (1992). Reading comprehension in Chinese. In H.-C. Chen & O. J. L. Tzeng (Eds.), Language processing in Chinese (pp. 175-205). Amsterdam, Netherlands: Elsevier.
  42. Chen, H.-C. (1999). How do readers of Chinese process words during reading for comprehension? In J. Wang, A. Inhoff, & H.-C. Chen (Eds.), Reading Chinese script: A cognitive analysis (pp. 257-278). Mahwah, NJ: Erlbaum.
  43. Cheng, L. L.-S., & Sybesma, R. (1998). Yi-wan tang, yi-ge tang: Classifiers and massifiers. Tsing Hua Journal of Chinese Studies, 28, 385-412.
  44. Dick, A. S., & Broce, I. (2015). The neurobiology of gesture and its development. In G. Hickok & S. L. Small (Eds.), Neurobiology of language (pp. 389-398). London, England: Elsevier.
  45. Fan, L.Y., Lee, S.-H., & Chou, T.-L. (2010). Interaction between brain regions during semantic processing in Chinese adults. Language and Linguistics, 11, 159-182.
  46. Hart, J., Jr. (2015). The neurobiology of cognition and behavior. New York, NY: Oxford University Press.
  47. Lock, G. (1996). Functional English grammar. Cambridge, England: Cambridge University Press.
  48. McNealy, K., Dapretto, M., & Bookheimer, S. (2009). Language and the developing brain: Insights from neuroimaging. In J. M. Rumsey & M. Ernst (Eds.), Neuroimaging in developmental clinical neuroscience (pp. 99-107). New York, NY: Cambridge University Press.
  49. Myers, J. (2000). Rules vs. analogy in Mandarin classifier selection. Language and Linguistics, 1, 187-209.
  50. Sun, C. (2006). Chinese: A linguistic introduction. New York, NY: Cambridge University Press.
  51. Tai, J. H.-Y. & Chao, F.-Y. (1994). A semantic study of the classifier zhang. Journal of Chinese Language Teachers Association, 29, 67-78.
  52. Tai, J. H.-Y. & Wang, L. (1990). A semantic study of the classifier tiao. Journal of Chinese Language Teachers Association, 25, 35-56.
  53. Wiebusch, T. (1995). Quantification and qualification: Two competing functions of numeral classifiers in the light of the radical system of the Chinese script. Journal of Chinese Linguistics, 23, 1-41.