题名

TDP-43在哺乳動物脊髓運動神經元的生理功能和病理功能缺失中所扮演的角色

并列篇名

Physiological Function and Pathological Dysfunction of TDP-43 in Mammalian Spinal Cord Motor Neurons

DOI

10.6342/NTU.2013.01344

作者

武蓮絲

关键词

TAR去氧核糖核酸結合酶-43 ; 肌萎縮性脊髓側索硬化症 ; 蛋白質穩定性 ; 細胞凋亡 ; 脊髓運動神經元細胞 ; 基因剔除 ; 運動神經元缺失 ; TDP-43 ; ALS ; Protein Stability ; Apoptosis ; Spinal Motor Neuron Cells ; Gene Knock-out ; Motor Neuron Loss

期刊名称

臺灣大學分子醫學研究所學位論文

卷期/出版年月

2013年

学位类别

博士

导师

沈哲鯤

内容语文

英文

中文摘要

TDP-43〈TAR去氧核糖核酸結合酶-43〉為Tardbp基因所轉譯的多功能RNA與DNA結合蛋白,近幾年在許多具有泛素沉澱物堆積的神經退化性疾病中,發現主要的疾病蛋白為TDP-43。目前至少九個基因突變與TDP-43泛素沉澱物堆積的運動神經元退化性疾病(俗稱漸凍人,Amyotrophic Lateral Sclerosis, ALS)相關,包含Tardbp基因本身,在ALS病人中,約有三十幾個胺基酸突變被發現在Tardbp基因上,然而其致病機轉仍然未知。於小鼠運動神經元細胞株中,表現野生型〈wild type〉或突變型〈mutant〉人類TDP-43蛋白造成顯著的細胞凋亡,此現象並沒有在其他神經元細胞株或纖維母細胞株中發現;此外,表現相同濃度的野生型及突變型人類TDP-43質體DNA,突變型TDP-43在老鼠運動神經元細胞中造成較高的細胞死亡率,由實驗結果得知此現象與突變型TDP-43蛋白本身相對於野生型TDP-43蛋白擁有較高的穩定度相關。為更進一步了解TDP-43蛋白的生理功能,我們利用基因標靶技術剃除小鼠體內TDP-43蛋白的表現,缺少TDP-43蛋白表現的小鼠死於胚胎著床時期,約胚胎期三點五至六點五天,觀察基因剔除小鼠囊胚〈blastocysts〉顯示外觀正常但無法於體外培養的情形下正常成長成內細胞團〈Inner cell mass〉,為了研究TDP-43代謝異常在ALS疾病中扮演的角色,我們利用條件性基因標靶技術於小鼠運動神經元細胞中專一性剃除小鼠TDP-43基因表現,此小鼠具有類ALS的症狀,例如運動神經元退化症的駝背、運動失能、肌肉萎縮、運動神經元缺失及神經膠細胞增生等等,泛素蛋白更顯著地堆積在脊髓運動神經元內。根據細胞實驗和TDP-43蛋白過度表現之小鼠模式所得到的結果,我們推測TDP-43基因突變會導致TDP-43蛋白穩定性增加,進而使突變型TDP-43蛋白量增加,運動神經元細胞株中對於TDP-43蛋白量具有較低的耐受性,因而在ALS疾病裡造成運動神經退化及病變;全身性剃除TDP-43蛋白表現的小鼠模式中,顯示TDP-43蛋白為體外培養內細胞團生長所必須,脊髓運動神經元內專一性剔除TDP-43表現的小鼠模式中,顯示TDP-43在哺乳類脊髓運動神經元長期生存扮演重要的角色,TDP-43蛋白缺失可能為造成具有TDP-43蛋白病變的ALS疾病中神經退化的主要原因。

英文摘要

TDP-43, a multi-functional DNA/ RNA-binding protein encoded by the TARDBP gene, has emerged as a major patho-signature factor of the ubiquitinated intracellular inclusions (UBIs) in the diseased cells of a range of neurodegenerative diseases. Mutations in at least 9 different genes including TARDBP have been identified in ALS with TDP-43 (+)-UBIs. Thus far, the pathogenic role(s) of the more than 30 ALS-associated mutations in the TARDBP gene has not been well defined. By transient DNA transfection studies, we show that exogenously expressed human TDP-43 (hTDP-43), either wild type (WT) or 2 different ALS mutant (MT) forms, could cause significantly higher apoptotic death rate of a mouse spinal motor neuron-like cell line (NSC34) than other types of cells, e.g. mouse neuronal Neuro2a and human fibroblast HEK293T cells. Furthermore, at the same plasmid DNA dose(s) used for transfection, the percentages of NSC34 cell death caused by the 2 exogenously expressed hTDP-43 mutants are all higher than that caused by the WT hTDP-43. Significantly, the above observations are correlated with higher steady-state levels of the mutant hTDP-43 proteins as well as their stabilities than the WT. To understand the physiological functions of TDP-43 in vivo, we have used gene targeting approach to disrupt the expression of TDP-43 in mouse. Loss of the TDP-43 expression results in peri-implantation lethality of mice between embryonic day (E) 3 3.5 to 6.5. Blastocysts of the homozygous Tardbp null mutants are morphologically normal but exhibit defective outgrowth of the inner cell mass (ICM) cells in vitro. Further emphasized the role of the mismetabolism of TDP-43 in the pathogenesis of ALS is addressed by the conditional mouse gene targeting approach, we show that mice with inactivation of the Tardbp gene in the spinal cord motor neurons (HB9:Cre-Tardbplx/-) exhibit progressive and male-dominant development of ALS-related phenotypes including kyphosis, motor dysfunctions, muscle weakness/ atrophy, motor neuron loss, and astrocytosis in the spinal cord. Significantly, ubiquitinated proteins accumulate in the TDP-43-depleted motor neurons of the spinal cords of HB9:Cre–Tardbplx/– mice with the ALS phenotypes. Based on the data of cell culture experiments and HB9-hTDP-43 transgenic mice, we suggest that one major common consequence of the different ALS-associated TDP-43 mutations is the stabilization of the hTDP-43 polypeptide. The resulting elevation of the steady state level of hTDP-43 in combination with the relatively low tolerance of the spinal motor neurons to the increased amount of hTDP-43 lead to the neurodegeneration and pathogenesis of ALS, and of diseases with TDP-43 proteinopathies in general. The EIIa:Cre–Tardbplx/lx Mice provides genetic evidence for the in vivo role of TDP-43 as an essential gene for the viability and expansion of ICM cells of the implanting blastocysts. The study of HB9:Cre–Tardbplx/–mice not only establishes an important role of TDP-43 in the long term survival and functioning of the mammalian spinal cord motor neurons, but it also establishes that loss-of-TDP-43 function could be one major cause for neurodegeneration in ALS with TDP-43 proteinopathies.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 分子醫學研究所
参考文献
  1. 1. H. Y. Wang, I. F. Wang, J. Bose, C. K. Shen, Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130 (Jan, 2004).
    連結:
  2. 2. Y. M. Ayala et al., Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348, 575 (May 6, 2005).
    連結:
  3. 3. S. H. Ou, F. Wu, D. Harrich, L. F. Garcia-Martinez, R. B. Gaynor, Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69, 3584 (Jun, 1995).
    連結:
  4. 4. I. F. Wang, L. S. Wu, H. Y. Chang, C. K. Shen, TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105, 797 (May, 2008).
    連結:
  5. 5. C. Huang, P. Y. Xia, H. Zhou, Sustained expression of TDP-43 and FUS in motor neurons in rodent's lifetime. Int J Biol Sci 6, 396 (2010).
    連結:
  6. 6. I. F. Wang, N. M. Reddy, C. K. Shen, Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 99, 13583 (Oct 15, 2002).
    連結:
  7. 8. E. Buratti et al., Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. Embo J 20, 1774 (Apr 2, 2001).
    連結:
  8. 9. P. A. Mercado, Y. M. Ayala, M. Romano, E. Buratti, F. E. Baralle, Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 33, 6000 (2005).
    連結:
  9. 10. J. K. Bose, I. F. Wang, L. Hung, W. Y. Tarn, C. K. Shen, TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J Biol Chem 283, 28852 (Oct 24, 2008).
    連結:
  10. 11. T. Arai et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and biophysical research communications 351, 602 (Dec 22, 2006).
    連結:
  11. 12. M. Neumann et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130 (Oct 6, 2006).
    連結:
  12. 13. E. Buratti, F. E. Baralle, Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator 74
    連結:
  13. of CFTR exon 9. J Biol Chem 276, 36337 (Sep 28, 2001).
    連結:
  14. 14. P. H. Kuo, L. G. Doudeva, Y. T. Wang, C. K. Shen, H. S. Yuan, Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37, 1799 (Apr, 2009).
    連結:
  15. 15. E. Buratti et al., TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280, 37572 (Nov 11, 2005).
    連結:
  16. 16. A. D'Ambrogio et al., Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37, 4116 (Jul, 2009).
    連結:
  17. 17. A. K. Chen et al., Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc 132, 1186 (Feb 3, 2010).
    連結:
  18. 18. M. J. Winton et al., Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283, 13302 (May 9, 2008).
    連結:
  19. 19. Y. J. Zhang et al., Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27, 10530 (Sep 26, 2007).
    連結:
  20. 20. Y. J. Zhang et al., Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A, (Apr 21, 2009).
    連結:
  21. 21. Y. Shiina, K. Arima, H. Tabunoki, J. Satoh, TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol 30, 641 (May, 2010).
    連結:
  22. 22. P. E. Ash et al., Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19, 3206 (Aug 15, 2010).
    連結:
  23. 23. B. S. Johnson, J. M. McCaffery, S. Lindquist, A. D. Gitler, A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 105, 6439 (Apr 29, 2008).
    連結:
  24. 24. C. Yang et al., The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5, e15878 (2010).
    連結:
  25. 25. G. S. Pesiridis, K. Tripathy, S. Tanik, J. Q. Trojanowski, V. M. Lee, A "two-hit" hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 286, 18845 (May 27, 2011).
    連結:
  26. 26. A. Caccamo, S. Majumder, S. Oddo, Cognitive decline typical of frontotemporal lobar degeneration in transgenic mice expressing the 25-kDa 76
    連結:
  27. 27. O. D. King, A. D. Gitler, J. Shorter, The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain research 1462, 61 (Jun 26, 2012).
    連結:
  28. 28. M. M. Abhyankar, C. Urekar, P. P. Reddi, A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J Biol Chem 282, 36143 (Dec 14, 2007).
    連結:
  29. 29. B. Lehner, C. M. Sanderson, A protein interaction framework for human mRNA degradation. Genome Res 14, 1315 (Jul, 2004).
    連結:
  30. 30. M. Kim et al., The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517 (Nov 25, 2004).
    連結:
  31. 31. W. Luo, A. W. Johnson, D. L. Bentley, The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 20, 954 (Apr 15, 2006).
    連結:
  32. 32. D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, F. J. Rauscher, 3rd, SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16, 919 (Apr 15, 2002).
    連結:
  33. multidimensional protein identification technology. Mol Cell 14, 685 (Jun 4, 2004).
    連結:
  34. 34. Z. Shou et al., Genomic structure and analysis of transcriptional regulation of the mouse zinc-fingers and homeoboxes 1 (ZHX1) gene. Gene 302, 83 (Jan 2, 2003).
    連結:
  35. 35. S. West, N. Gromak, N. J. Proudfoot, Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522 (Nov 25, 2004).
    連結:
  36. 36. N. Custodio, M. Vivo, M. Antoniou, M. Carmo-Fonseca, Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site. J Cell Biol 179, 199 (Oct 22, 2007).
    連結:
  37. 37. J. S. Snowden, D. Neary, D. M. Mann, Frontotemporal dementia. Br J Psychiatry 180, 140 (Feb, 2002).
    連結:
  38. 38. S. M. Pickering-Brown, The complex aetiology of frontotemporal lobar degeneration. Exp Neurol 206, 1 (Jul, 2007).
    連結:
  39. 39. N. J. Cairns et al., Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114, 5 (Jul, 2007).
    連結:
  40. 40. C. Lomen-Hoerth, T. Anderson, B. Miller, The overlap of amyotrophic lateral 78
    連結:
  41. sclerosis and frontotemporal dementia. Neurology 59, 1077 (Oct 8, 2002).
    連結:
  42. 41. J. Murphy, R. Henry, C. Lomen-Hoerth, Establishing subtypes of the continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64, 330 (Mar, 2007).
    連結:
  43. 42. J. M. Murphy et al., Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64, 530 (Apr, 2007).
    連結:
  44. 43. I. R. Mackenzie et al., Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61, 427 (May, 2007).
    連結:
  45. 44. C. Amador-Ortiz et al., TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61, 435 (May, 2007).
    連結:
  46. 45. K. Uryu et al., Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67, 555 (Jun, 2008).
    連結:
  47. 46. S. Higashi et al., Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain research 1184, 284 (Dec 12, 2007).
    連結:
  48. 47. H. Nakashima-Yasuda et al., Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114, 221 (Sep, 2007).
    連結:
  49. 48. M. Hasegawa et al., TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130, 1386 (May, 2007).
    連結:
  50. 49. F. Geser et al., Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 115, 133 (Jan, 2008).
    連結:
  51. 50. A. Probst, K. I. Taylor, M. Tolnay, Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathol 114, 335 (Oct, 2007).
    連結:
  52. 51. M. S. Forman, J. Q. Trojanowski, V. M. Lee, TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 17, 548 (Oct, 2007).
    連結:
  53. 52. M. Neumann, L. K. Kwong, D. M. Sampathu, J. Q. Trojanowski, V. M. Lee, TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64, 1388 (Oct, 2007).
    連結:
  54. 53. J. Snowden, D. Neary, D. Mann, Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathol 114, 31 (Jul, 2007).
    連結:
  55. 54. G. T. Banks, A. Kuta, A. M. Isaacs, E. M. Fisher, TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander. Mamm Genome 19, 299 (May, 2008).
    連結:
  56. 55. R. M. Liscic, L. T. Grinberg, J. Zidar, M. A. Gitcho, N. J. Cairns, ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol 15, 772 (Aug, 2008).
    連結:
  57. 56. J. B. Guinto, G. P. Ritson, J. P. Taylor, M. S. Forman, Valosin-containing protein and the pathogenesis of frontotemporal dementia associated with inclusion body myopathy. Acta Neuropathol 114, 55 (Jul, 2007).
    連結:
  58. 57. L. K. Kwong, M. Neumann, D. M. Sampathu, V. M. Lee, J. Q. Trojanowski, TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol 114, 63 (Jul, 2007).
    連結:
  59. 58. I. R. Mackenzie, The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol 114, 49 (Jul, 2007).
    連結:
  60. 59. I. R. Mackenzie, R. Rademakers, The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8, 237 (Nov, 2007).
    連結:
  61. 60. L. K. Kwong, K. Uryu, J. Q. Trojanowski, V. M. Lee, TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 16, 41 (2008).
    連結:
  62. 61. S. M. Pickering-Brown, Progranulin and frontotemporal lobar degeneration. Acta Neuropathol 114, 39 (Jul, 2007).
    連結:
  63. 62. N. J. Cairns et al., TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171, 227 (Jul, 2007).
    連結:
  64. 63. Y. Davidson et al., Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113, 521 (May, 2007).
    連結:
  65. 64. M. Filimonenko et al., Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179, 485 (Nov 5, 2007).
    連結:
  66. 65. G. Skibinski et al., Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37, 806 (Aug, 2005).
    連結:
  67. 66. N. Parkinson et al., ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074 (Sep 26, 2006).
    連結:
  68. 67. J. Dubnau et al., The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13, 286 (Feb 18, 2003).
    連結:
  69. 68. K. C. Martin, M. Barad, E. R. Kandel, Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol 10, 587 (Oct, 2000).
    連結:
  70. 69. M. A. Sutton, E. M. Schuman, Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49 (Oct 6, 2006).
    連結:
  71. 70. J. Ule, R. B. Darnell, RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol 16, 102 (Feb, 2006).
    連結:
  72. 72. E. S. Lein et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168 (Jan 11, 2007).
    連結:
  73. 73. F. Ferrari et al., The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol Cell Neurosci 34, 343 (Mar, 2007).
    連結:
  74. 74. P. Villace, R. M. Marion, J. Ortin, The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res 32, 2411 (2004).
    連結:
  75. 75. G. Elvira et al., Characterization of an RNA granule from developing brain. Mol Cell Proteomics 5, 635 (Apr, 2006).
    連結:
  76. 76. S. A. Barbee et al., Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997 (Dec 21, 2006).
    連結:
  77. 77. R. Parker, U. Sheth, P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635 (Mar 9, 2007).
    連結:
  78. 78. R. I. Gregory et al., The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235 (Nov 11, 2004).
    連結:
  79. 80. S. Miller et al., Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507 (Oct 24, 2002).
    連結:
  80. 81. I. Gijselinck et al., Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiol Aging, (Dec 7, 2007).
    連結:
  81. 82. S. Rollinson et al., TDP-43 gene analysis in frontotemporal lobar degeneration. Neurosci Lett 419, 1 (May 23, 2007).
    連結:
  82. 83. A. Schumacher et al., No association of TDP-43 with sporadic frontotemporal dementia. Neurobiol Aging, (Jul 3, 2007).
    連結:
  83. 84. M. A. Gitcho et al., TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63, 535 (Apr, 2008).
    連結:
  84. 85. E. Kabashi et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40, 572 (May, 2008).
    連結:
  85. 86. J. Sreedharan et al., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668 (Mar 21, 2008).
    連結:
  86. 87. V. M. Van Deerlin et al., TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet 84
    連結:
  87. Neurol 7, 409 (May, 2008).
    連結:
  88. 88. A. Yokoseki et al., TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63, 538 (Apr, 2008).
    連結:
  89. 89. L. M. Igaz et al., Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173, 182 (Jul, 2008).
    連結:
  90. 90. N. Gilks et al., Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15, 5383 (Dec, 2004).
    連結:
  91. 91. S. H. Li, X. J. Li, Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet 20, 146 (Mar, 2004).
    連結:
  92. 92. D. W. Mulder, Clinical limits of amyotrophic lateral sclerosis. Adv Neurol 36, 15 (1982).
    連結:
  93. 93. P. Pasinelli, R. H. Brown, Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7, 710 (Sep, 2006).
    連結:
  94. 94. L. C. Wijesekera, P. N. Leigh, Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4, 3 (2009).
    連結:
  95. 95. C. A. Johnston et al., Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol 253, 1642 (Dec, 2006).
    連結:
  96. 96. Z. R. Manjaly et al., The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotroph Lateral Scler 11, 439 (Oct, 2010).
    連結:
  97. 97. C. Lagier-Tourenne, M. Polymenidou, D. W. Cleveland, TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19, R46 (Apr 15, 2010).
    連結:
  98. 98. F. Geser, V. M. Lee, J. Q. Trojanowski, Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30, 103 (Apr, 2010).
    連結:
  99. 99. C. Lagier-Tourenne, D. W. Cleveland, Rethinking ALS: the FUS about TDP-43. Cell 136, 1001 (Mar 20, 2009).
    連結:
  100. 100. A. S. Chen-Plotkin, V. M. Lee, J. Q. Trojanowski, TAR DNA-binding protein 43 in neurodegenerative disease. Nature reviews 6, 211 (Apr, 2010).
    連結:
  101. 101. P. J. Shaw, Molecular and cellular pathways of neurodegeneration in motor neurone disease. Journal of neurology, neurosurgery, and psychiatry 76, 1046 (Aug, 2005).
    連結:
  102. 102. I. R. Mackenzie, R. Rademakers, M. Neumann, TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9, 995 (Oct, 2010).
    連結:
  103. 103. S. Kato, Amyotrophic lateral sclerosis models and human neuropathology: 86
    連結:
  104. 104. B. J. Turner, K. Talbot, Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85, 94 (May, 2008).
    連結:
  105. 105. M. E. Gurney et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772 (Jun 17, 1994).
    連結:
  106. 106. M. E. Gurney, F. B. Cutting, P. Zhai, P. K. Andrus, E. D. Hall, Pathogenic mechanisms in familial amyotrophic lateral sclerosis due to mutation of Cu, Zn superoxide dismutase. Pathol Biol (Paris) 44, 51 (Jan, 1996).
    連結:
  107. 107. S. Kato et al., Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol 110, 101 (Aug, 2005).
    連結:
  108. 108. B. S. Johnson et al., TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284, 20329 (Jul 24, 2009).
    連結:
  109. 109. E. Kabashi et al., Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19, 671 (Feb 15, 2010).
    連結:
  110. 110. W. Duan et al., Mutant TAR DNA-binding protein-43 induces oxidative injury 87
    連結:
  111. 111. S. J. Barmada et al., Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30, 639 (Jan 13, 2010).
    連結:
  112. 112. I. Wegorzewska, S. Bell, N. J. Cairns, T. M. Miller, R. H. Baloh, TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106, 18809 (Nov 3, 2009).
    連結:
  113. 113. K. J. Tsai et al., Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207, 1661 (Aug 2, 2010).
    連結:
  114. 114. H. Wils et al., TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107, 3858 (Feb 23, 2010).
    連結:
  115. 115. Y. F. Xu et al., Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice. J Neurosci 30, 10851 (Aug 11, 2010).
    連結:
  116. 116. H. Zhou et al., Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6, e1000887 (2010).
    連結:
  117. 117. M. J. Lin, C. W. Cheng, C. K. Shen, Neuronal function and dysfunction of 88
    連結:
  118. Drosophila dTDP. PLoS One 6, e20371.
    連結:
  119. 118. L. M. Igaz et al., Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121, 726 (Feb 1, 2011).
    連結:
  120. 119. M. J. Strong et al., TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35, 320 (Jun, 2007).
    連結:
  121. 120. M. Mishra et al., Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114, 81 (Jul, 2007).
    連結:
  122. 121. I. F. Wang, L. S. Wu, C. K. Shen, TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14, 479 (Nov, 2008).
    連結:
  123. 122. E. Buratti, F. E. Baralle, The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66, 1 (2009).
    連結:
  124. 123. N. R. Cashman et al., Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194, 209 (Jul, 1992).
    連結:
  125. 124. D. Matusica, M. P. Fenech, M. L. Rogers, R. A. Rush, Characterization and use of the NSC-34 cell line for study of neurotrophin receptor trafficking. Journal of neuroscience research 86, 553 (Feb 15, 2008).
    連結:
  126. 125. T. Amano, E. Richelson, M. Nirenberg, Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline
    連結:
  127. 126. F. L. Graham, J. Smiley, W. C. Russell, R. Nairn, Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59 (Jul, 1977).
    連結:
  128. 127. M. O. Hengartner, The biochemistry of apoptosis. Nature 407, 770 (Oct 12, 2000).
    連結:
  129. 128. S. Arber et al., Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659 (Aug, 1999).
    連結:
  130. 129. D. M. Hess et al., Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses. J Comp Neurol 501, 465 (Apr 1, 2007).
    連結:
  131. 130. E. R. Kramer et al., Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron 50, 35 (Apr 6, 2006).
    連結:
  132. 131. S. H. Kim et al., Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem 284, 8083 (Mar 20, 2009).
    連結:
  133. vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67, 8994 (Oct 1, 2007).
    連結:
  134. 133. D. Gao et al., Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 11, 397 (Apr, 2009).
    連結:
  135. 134. X. Yang et al., Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399 (May, 2001).
    連結:
  136. 135. V. Luria, E. Laufer, Lateral motor column axons execute a ternary trajectory choice between limb and body tissues. Neural Dev 2, 13 (2007).
    連結:
  137. 136. C. Zhou, C. P. Zhao, C. Zhang, G. Y. Wu, F. Xiong, A method comparison in monitoring disease progression of G93A mouse model of ALS. Amyotroph Lateral Scler 8, 366 (Dec, 2007).
    連結:
  138. 137. P. W. Andrews, L. J. Meyer, K. L. Bednarz, H. Harris, Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma 3, 33 (1984).
    連結:
  139. 138. X. M. Li et al., Retrograde regulation of motoneuron differentiation by muscle beta-catenin. Nat Neurosci 11, 262 (Mar, 2008).
    連結:
  140. function are preserved in motor neurons lacking ss-actin in vivo. PLoS One 6, e17768 (2011).
    連結:
  141. 140. D. S. Newman, S. K. Aggarwal, R. Silbergleit, Thoracic radicular symptoms in amyotrophic lateral sclerosis. J Neurol Sci 129 Suppl, 38 (May, 1995).
    連結:
  142. 141. M. Azzouz et al., Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. Muscle Nerve 20, 45 (Jan, 1997).
    連結:
  143. 142. R. E. Burke, P. L. Strick, K. Kanda, C. C. Kim, B. Walmsley, Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J Neurophysiol 40, 667 (May, 1977).
    連結:
  144. 143. A. Friese et al., Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci U S A 106, 13588 (Aug 11, 2009).
    連結:
  145. 144. N. A. Shneider, M. N. Brown, C. A. Smith, J. Pickel, F. J. Alvarez, Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev 4, 42 (2009).
    連結:
  146. 145. A. J. Hudson et al., Clinicopathological features of primary lateral sclerosis are different from amyotrophic lateral sclerosis. Brain Res Bull 30, 359 (1993).
    連結:
  147. 146. J. Tao et al., Deletion of astroglial Dicer causes non-cell-autonomous neuronal 92
    連結:
  148. 147. M. D. Nguyen, R. C. Lariviere, J. P. Julien, Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. Proc Natl Acad Sci U S A 97, 12306 (Oct 24, 2000).
    連結:
  149. 148. E. D. Hall, J. A. Oostveen, M. E. Gurney, Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249 (Jul, 1998).
    連結:
  150. 149. S. C. Ling et al., ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107, 13318 (Jul 27, 2010).
    連結:
  151. 150. S. Watanabe, K. Kaneko, K. Yamanaka, Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem 288, 3641 (Feb 1, 2013).
    連結:
  152. 151. Y. Li et al., A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A 107, 3169 (Feb 16, 2010).
    連結:
  153. 152. K. A. Hanson, S. H. Kim, D. A. Wassarman, R. S. Tibbetts, Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem 285, 11068 (Apr 9, 2010).
    連結:
  154. 153. C. Y. Chen, C. W. Lin, C. Y. Chang, S. T. Jiang, Y. P. Hsueh, Sarm1, a negative 93
    連結:
  155. regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol 193, 769 (May 16).
    連結:
  156. 154. Y. Tashiro et al., Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287, 42984 (Dec 14, 2012).
    連結:
  157. 155. H. Wang, S. K. Dey, Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7, 185 (Mar, 2006).
    連結:
  158. 156. E. Buratti, F. E. Baralle, Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13, 867 (2008).
    連結:
  159. 157. Y. B. Chan et al., Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 12, 1367 (Jun 15, 2003).
    連結:
  160. 158. F. Feiguin et al., Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583, 1586 (May 19, 2009).
    連結:
  161. 159. B. Schrank et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94, 9920 (Sep 2, 1997).
    連結:
  162. 160. H. M. Hsieh-Li et al., A mouse model for spinal muscular atrophy. Nat Genet 24, 66 (Jan, 2000).
    連結:
  163. 161. M. R. Lunn, C. H. Wang, Spinal muscular atrophy. Lancet 371, 2120 (Jun 21, 2008).
    連結:
  164. 162. C. A. Ross, M. A. Poirier, Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6, 891 (Nov, 2005).
    連結:
  165. 163. M. J. Lin, C. W. Cheng, C. K. Shen, Neuronal function and dysfunction of Drosophila dTDP. PLoS One 6, e20371 (2011).
    連結:
  166. 164. X. Shan, P. M. Chiang, D. L. Price, P. C. Wong, Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107, 16325 (Sep 14, 2010).
    連結:
  167. 165. N. R. Stallings, K. Puttaparthi, C. M. Luther, D. K. Burns, J. L. Elliott, Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis, (Jul 19, 2010).
    連結:
  168. 166. J. K. Bose, C. C. Huang, C. K. Shen, Regulation of autophagy by the neuropathological protein TDP-43. J Biol Chem, (Nov 3, 2011).
    連結:
  169. 167. X. Liang et al., Signaling via the prostaglandin E2 receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J Clin Invest, (Oct 3).
    連結:
  170. 168. L. Hubert, Jr., Y. Lin, V. Dion, J. H. Wilson, Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1.
    連結:
  171. Hum Mol Genet, (Sep 22).
    連結:
  172. 7. Y. F. Yang et al., Interleukin-1 receptor associated kinases-1/4 inhibition
  173. 73
  174. protects against acute hypoxia/ischemia-induced neuronal injury in vivo and in vitro. Neuroscience 196, 25 (Nov 24).
  175. 75
  176. C-terminal fragment of TDP-43. Am J Pathol 180, 293 (Jan, 2012).
  177. 33. S. Sato et al., A set of consensus mammalian mediator subunits identified by 77
  178. 79
  179. 80
  180. 81
  181. 71. A. Govindarajan, R. J. Kelleher, S. Tonegawa, A clustered plasticity model of 82
  182. long-term memory engrams. Nat Rev Neurosci 7, 575 (Jul, 2006).
  183. 79. G. Y. Wu, K. Deisseroth, R. W. Tsien, Spaced stimuli stabilize MAPK pathway 83
  184. activation and its effects on dendritic morphology. Nat Neurosci 4, 151 (Feb, 2001).
  185. 85
  186. similarities and differences. Acta Neuropathol 115, 97 (Jan, 2008).
  187. in motor neuron-like cell. Neuroscience 169, 1621 (Sep 15, 2010).
  188. 89
  189. acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A 69, 258 (Jan, 1972).
  190. 132. M. F. Corsten et al., MicroRNA-21 knockdown disrupts glioma growth in 90
  191. 139. T. R. Cheever, E. A. Olson, J. M. Ervasti, Axonal regeneration and neuronal 91
  192. dysfunction and degeneration. J Neurosci 31, 8306 (Jun 1).
  193. 94
  194. 95