题名

磁性固體觸媒之合成及其應用於生質柴油製造

并列篇名

Synthesis of Magnetic Solid Catalysts and Their Application for Biodiesel Manufacturing

DOI

10.6342/NTU201602580

作者

蔡民鎰

关键词

生質柴油 ; 大豆油 ; 痲瘋樹油 ; 磁性固體觸媒 ; 轉酯化反應 ; 氧化鈣 ; 氧化鍶 ; Biodiesel ; Soybean oil ; Jatropha oil ; Magnetic solid catalysts ; Transesterification ; Calcium oxide ; Strontium oxide

期刊名称

臺灣大學環境工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張慶源

内容语文

繁體中文

中文摘要

為避免氣候變遷的衝擊,全球有必要轉型為低碳能源體系,因此再生能源的推廣應用為未來趨勢。本研究利用磁性固態鹼觸媒(CA/SM及SrO/SM)進行轉酯化反應製備生質柴油,除了製備出碳中性之生質柴油外,更結合了磁性固態觸媒,增加觸媒的回收率並能重複使用,達到降低成本以利未來工業上廣泛使用。 藉由磁性固態鹼觸媒對大豆油轉酯化反應找出最適條件,再進行痲瘋樹油兩階段轉酯化反應,並透過分析反應後所得生質柴油性質包括酸價、碘價、動黏度、密度、冷濾點及熱值等性質進行討論。 藉由醋酸鈣為前驅物披覆於磁性顆粒上(CA/SM)會有不均勻現象,且當觸媒Ca濃度(CCa)大於40 wt%時磁性載體會失磁。而由硝酸鈣為前驅物(CN/SM)時披覆較均勻,但由於前驅物熔點低,鍛燒後會有團聚現象導致催化活性低。另外SrO/SM觸媒藉由硝酸鍶為前驅物以含浸法、沉澱法製備時,由於Sr及Fe3O4皆為不穩定物質而導致鍛燒時Sr與載體反應成他物質且容易失磁,使觸媒無轉酯化能力。 CA/SM對大豆油進行轉酯化反應所得最適條件為甲醇與油莫耳比(M : O)為12:1、轉酯化反應溫度(TT)為338 K、反應時間(tT)為7 h、觸媒添加量(MC)為6 wt%及CCa為10 wt%,其產率為94%。然而,CA/SM的重複使用性不佳,使用第二次後產率已下降至60%,主要原因為Ca的溶出及觸媒表面沉積有機物等原因所導致。在對痲瘋樹油轉酯化反應中,產率隨著時間增長而提升,反應時間7 h已近反應平衡,產率達90%。 大豆油生質柴油及痲瘋樹油生質柴油性質如酸價、密度及冷濾點已符合法規標準(CNS 15072),但含水率皆高於標準規範,可透過硫酸鎂脫水或蒸餾等方式去除水分。另外大豆油生質柴油的碘價及痲瘋樹油生質柴油的黏滯度皆略高於法規,此可藉由摻配方式改善。

英文摘要

In order to avoid the impact of climate change, the need for a global transition toward a low carbon energy system in urgent. This promotes the use of renewable energy sources for the future development. In this study, transesterifications of soybean oil and jatropha oil to biodiesel using magnetic solid alkali catalysts were examined. The nanometer magnetic catalysts were prepared by loading CaO and SrO onto the SiO2/Fe3O4 (CA/SM, SrO/SM). The magnetic catalyst can be separated easily by exerting magnetic field after transesterification reaction for further recovery, regeneration and reuse. This can simplify the process and decrease costs. A series of transesterification experiments were conducted to find proper operating conditions. The properties of biodiesel produced wewe measured and elucidated. The results indicated that CA/SM catalysts prepared from calcium acetate were unevenly dispersed with CaO and lost magnetism when Ca concentration in Ca-containg catalyst (CCa) is higher than 40 wt%. In contrast, for the catalyst using calcium nitrate as precursor (CN/SM), calcium oxide was coated on the support SM more uniformly. However, the low melting point of calcium nitrate precursor lead to agglomeration resulting in low catalytic activity after calcination. The catalysts SrO/SM prepared from strontium nitrate by impregnation and precipitation methods lost magnetism easily and exhibited no catalytic capability for transesterification. This maybe attributed to the reactions of Sr and Fe3O4 forming other substances in the calcination process, thus inhibiting the catalytic ability of SrO. The proper operating conditions for manufacturing soybean-oil biodiesel (SOB) are 12:1 molar ratio of methanol to oil (M : O), 6 wt% of catalyst loading relative to oil (MC) and 10 wt% CaO at 338 K (TT) for 7 h (tT). However, CA/SM reusability was not promising with yield declined from 94% to 60% for the second reuse. The main cause may be due to the dissolution of calcium and deposition of organic matter on catalyst surface. Jatropha-oil biodiesel (JOB) was producted by using a two-stage transesterification process, i.e., pre-esterification followed by post transesterification. The transesterification reaction approached equilibrium after 7 h, achirving yield of 90%. Properties of soybean-oil biodiesel (SOB) and jatropha-oil biodiesel (JOB) of acid value, density and cold filter plugging point complies with standards (CNS 15072). However, the water contents are higher than the standard. The water in oil can be removed by distillation or magnesium sulfate. Furthermore the iodine value of SOB and kimetic viscosity of JOB are slightly higher than the standards and can be improved by blending with other biodiesel.

主题分类 工學院 > 環境工程學研究所
工程學 > 土木與建築工程
参考文献
  1. 1. Akbar, E., Z. Yaakob, S. K. Kamarudin, M. Ismail and J. Salimon (2009) “Characteristic and Composition of Jatropha Curcas Oil Seed from Malaysia and its Potential as Biodiesel Feedstock.” European Journal of Scientific Research 29(3): 396-403.
    連結:
  2. 2. Alonso, D.M., F. Vila, R. Mariscal, M. Ojeda, M. López Granados and J. Santamaría-González (2010) “Relevance of the physicochemical properties of CaO catalysts for the methanolysis of triglycerides to obtain biodiesel.” Catalysis Today 158(1-2): 114-20.
    連結:
  3. 3. Berrios, M., J. Siles, M.A. Martín and A. Martín (2007) “A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil.” Fuel 86(15): 2383-88.
    連結:
  4. 4. Bhattia, H. N., M. A. Hanifa, M. Qasima, A. Rehmanb (2008) “Biodiesel production from waste tallow.” Fuel 87(13-14): 2961-2966.
    連結:
  5. 6. Chen, C. L., C. C. Huang, D. T. Tran and J. S. Chang (2012) “Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts.” Bioresource Technology 113: 8-13.
    連結:
  6. 7. Chen, G.Y., R. Shana, B.B. Yana, J.F. Shia, S.Y. Lia and C.Y. Liu (2016) “Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol.” Fuel Processing Technology 143: 110-17.
    連結:
  7. 8. Chhetri, A. B., K. C. Watts and M. R. Islam (2008) “Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production.” Energies 1(1): 3-18.
    連結:
  8. 10. Chitra, P., P. Venkatachalam and A. Sampathrajan (2005) “Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil.” Energy for Sustainable Development 9(3):13-18.
    連結:
  9. 11. Corro, G., N. Tellez, E. Ayala and A. Marinez-Ayala (2010) “Two-step biodiesel production from Jatropha curcas crude oil using SiO2·HF solid catalyst for FFA esterification step.” Fuel 89(10): 2815-2821.
    連結:
  10. 12. Demirbas, A. (2009) “Progress and recent trends in biodiesel fuels.” Energy Conversion and Management 50(1): 14-34.
    連結:
  11. 13. Deng, X., Z. Fang and Y.H. Liu. (2010). “Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process.” Energy Conversion and Management 51(12): 2802-2807.
    連結:
  12. 14. Dias, A. P. S., J. Bernardo, P. Felizardo and M. J. N. Correia (2012) “Biodiesel production by soybean oil methanolysis over SrO/MgO catalysts: The relevance of the catalyst granulometry.” Fuel Processing Technology 102: 146-155.
    連結:
  13. 15. Dinescu, R. and M. Preda (1973) “Thermal decomposition of strontium hydroxide.” Journal of thermal analysis 5(4): 465-73.
    連結:
  14. 16. Feyzi, M. and G. Khajavi (2014) “Investigation of biodiesel production using modified strontium nanocatalysts supported on the ZSM-5 zeolite.” Industrial Crops and Products 58: 298-304.
    連結:
  15. 17. Feyzi, M. and L. Norouzi. (2016) “Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production.” Renewable Energy 94: 579-586.
    連結:
  16. 18. Freedman B. and M. O. Bagby (1990) “Predicting Cetane Number of N-Alcohols and Methyl Esters from their Physical Properties.” Renewable and Sustainable Energy Reviews 67(9), 565-571 .
    連結:
  17. 19. Fukuda H, A. Kondo and H. Noda (2001) “Biodiesel fuel production by transesterification of oils.” Journal of Bioscience and Bioengineering 92(5): 405–416.
    連結:
  18. 20. Gerpen, J. V. (2005) “Biodiesel processing and production.” Fuel Processing Technology 86(10): 1097-107.
    連結:
  19. 22. Granados, M. L., D. M. Alonso, I. Sa´daba, R. Mariscal and P. Oco´n (2009) “Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO.” Applied Catalysis B: Environmental 89(1-2): 265-272.
    連結:
  20. 23. Hilber, T., M. Mittelbach, and E. Schmidt (2006). “Animal fats perform well in biodiesel.” Render 16- 18.
    連結:
  21. 24. Hindryawati, N., G. P. Maniam, M. R. Karim and K. F. Ching (2014) “Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst.” Engineering Science and Technology, an International Journal 17(2): 95-103.
    連結:
  22. 25. Hu, S., Y. Guan, Y. Wang and H. Han (2011) “Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production.” Applied Energy 88(8): 2685-2690.
    連結:
  23. 26. IEA (International Energy Agency) (2013). Energy Technology Perspectives. World energy outlook.
    連結:
  24. 27. IEA (International Energy Agency) (2015). Energy Technology Perspectives. World energy outlook.
    連結:
  25. 28. Iler , R.K. (1979) “The Chemistry of Silica (Solubility, Polymerization, Colloid and Surface Properties and Biochemistry).” Wiley-Interscience, Houston, TX.
    連結:
  26. 29. Isahak, W., M. Ismail, J. Jahim, J. Salimon and M. Yarmo. (2012) “Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil.” Chemical Papers 66(3): 178–187.
    連結:
  27. 30. Jain, S. and M. P. Sharma (2010) “Biodiesel production from Jatropha curcas oil.” Renewable and Sustainable Energy Reviews 14(9): 3140-3147.
    連結:
  28. 31. Jakeria, M. R., M. A. Fazal and A. S. M. A. Haseeb (2014) “Influence of different factors on the stability of biodiesel: A review.” Renewable and Sustainable Energy Reviews 30: 154-163.
    連結:
  29. 33. Karmakar A, S. Karmakar and S. Mukherjee (2010) “Properties of various plants and animals feedstocks for biodiesel production.” Bioresource Technology 101(19): 7201–7210.
    連結:
  30. 34. Knothe, G. (2000) “Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy.” American Oil Chemists' Society 77(5): 489-493.
    連結:
  31. 35. Kouzu, M., T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka and J. Hidaka (2008) “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production.” Fuel 87(12): 2798-2806.
    連結:
  32. 36. Kouzu, M., S. Yamanaka, J. Hidaka and M. Tsunomori. (2009) “Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol.” Applied Catalysis A 355(1-2): 94-99.
    連結:
  33. 37. Kouzu, M. and J. S. Hidaka (2012) “Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review.” Fuel 93:1-12.
    連結:
  34. 38. Lee, D. W. and K. Y. Lee (2014) “Heterogeneous Solid Acid Catalysts for Esterification of Free Fatty Acids” Catalysis Surveys from Asia 18(2): 55-74.
    連結:
  35. 39. Liu, X., H. He, Y. Wang and S. Zhu (2007) “Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst.” Catalysis Communications 8(7): 1107-1111.
    連結:
  36. 40. Liu, Y., H. Lu, W. Jiang, D. Li, S. Liu and B. Liang (2012) “Biodiesel Production from Crude Jatropha curcas L. Oil with Trace Acid Catalyst.” Chinese Journal of Chemical Engineering 20(4): 740-746.
    連結:
  37. 41. Liu, Y., P. Zhang, M. Fan and P. Jiang (2016) “Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO.” Fuel 164: 314–21.
    連結:
  38. 42. Lo´pez, D. E., J. G. Goodwin Jr., D. A. Bruce and E. Lotero (2005) “Transesterification of triacetin with methanol on solid acid and base catalysts” Applied Catalysis A: General 295(2): 97-105.
    連結:
  39. 44. Lu, H., E. P. Reddy and P. G. Smirniotis (2006) “Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures.” Ind. Eng. Chem 45(11): 3944–49.
    連結:
  40. 47. MacLeoda, C. S., A. P. Harveya, A. F. Lee and K. Wilson. (2008) “Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production.” Renewable and Sustainable Energy Reviews 135(1-2): 63-70.
    連結:
  41. 48. Nair , S. and M. K. C. James (1984) “The effect of γ-irradiation on the thermal decomposition of strontium nitrate.” Journal of Radioanalytical and Nuclear Chemistry 86(5): 311-20.
    連結:
  42. 50. Meher, L. C., M. G. Kulkarni, A. K. Dalai and S. N. Naik. (2006) “Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts.” European Journal of Lipid Science and Technology 108(5): 389-397.
    連結:
  43. 51. Naegeli, D. W., L. G. Dodge and C. A. Moses (1983) “Sooting tendency of fuels containing polycyclic aromatics in a research combustor.” Energy 7(2): 168−175.
    連結:
  44. 52. Nasreen, S., H. Liu, R. Khan, X. C. Zhu and D. Skala (2015) “Transesterification of soybean oil catalyzed by Sr-doped cinder.” Energy Conversion and Management 95: 272-280.
    連結:
  45. 53. Ngamcharussrivichai, C., P. Totarat and K. Bunyakiat (2008) “Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil.” Applied Catalysis A: General 341(1-2): 77-85.
    連結:
  46. 54. Omar, W. N. N. W. and N. A. S. Amin (2011) “Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst.” Fuel Processing Technology 92(12): 2397-2405.
    連結:
  47. 55. Park, J.N., P. Zhang, Y. S. Hu and E. W. McFarlan (2010) “Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion.” Nanotechnology 21: 225708-1-8.
    連結:
  48. 56. Patil, P. D. and S. Deng (2009a) “Optimization of biodiesel production from edible and non-edible vegetable oils.” Fuel 88(7): 1302-1306.
    連結:
  49. 57. Patil, P. D. and S. Deng (2009b) “Transesterification of Camelina Sativa Oil Using Heterogeneous Metal Oxide Catalysts.” Energy & Fuels 23(9): 4619-4624.
    連結:
  50. 58. Rashtizadeh, E., F. Farzaneh, Z. Talebpour (2014) “Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production.” Bioresour Technol 154: 32-37.
    連結:
  51. 59. Rashid, U. and F. Anwar (2008) “Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil.” Fuel 87(3): 265-273.
    連結:
  52. 60. Rashid, U., F. Anwar, B. R. Moser and S. Ashraf (2008) “Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis.” Biomass and Bioenergy 32(12): 1202-1205.
    連結:
  53. 62. Samarta, C., C. Chaiya and P. Reubroycharoen. (2010) “Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst.” Energy Conversion and Management 51(7): 1428-1431.
    連結:
  54. 63. Schwab, A. W. and M. O. Bagby (1987) “Freedman B. Preparation and properties of diesel fuels from vegetable oils.” Fuel 66(10): 1372–8.
    連結:
  55. 64. Silitongaa, A. S., H. H. Masjukia, T. M. I. Mahliac, H. C. Onga, A. E. Atabania and W.T. Chong (2013) “A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties.” Renewable and Sustainable Energy Reviews 24: 514-33.
    連結:
  56. 65. Singh, S.P. and D. Singh (2010). “Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review.” Renewable and Sustainable Energy Reviews 14(1): 200-216.
    連結:
  57. 66. Srilatha, K., B. L. A. P. Devi, N. Lingaiah and R. B. N. Prasad (2012) “Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.” Bioresource Technology 119:306-311.
    連結:
  58. 67. Talebian-Kiakalaieh, A., N. A. S. Amin and H. Mazaheri (2013). “A review on novel processes of biodiesel production from waste cooking oil.” Applied Energy 104: 683–710.
    連結:
  59. 68. Tang, S., L. Wang, Y. Zhang, S. Li, S. Tian and B. Wang. (2012) “Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification.” Fuel Processing Technology 95: 84-89.
    連結:
  60. 69. Tantirungrotechai, J., S. Thepwatee and B. Yoosuk (2013) “Biodiesel synthesis over Sr/MgO solid base catalyst.” Fuel 106: 279-284.
    連結:
  61. 70. Tariq, M., S. Ali and N. Khalid (2012) “Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review.” Renewable and Sustainable Energy Reviews 16(8): 6303-6316.
    連結:
  62. 71. Teixeira da Silva de La Salles, K., S. M. P. Meneghetti, W. Ferreira de La Salles, M. R. Meneghetti, I. C. F. dos Santos, J. P. V. da Silva, S. H. V. de Carvalho and J.I. Soletti (2010) “Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel.” Industrial Crops and Products 32(3): 518-21.
    連結:
  63. 73. Veljković, V. B., O. S. Stamenković and M. B. Tasić (2014) “The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification.” Renewable and Sustainable Energy Reviews 32: 40-60.
    連結:
  64. 74. Vyas, A. P., N. Subrahmanyam and P. A. Patel (2009) “Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst.” Fuel 88(4): 625-628.
    連結:
  65. 75. Wang, Y., S. Ou, P. Liu, F. Xue and S. Tang (2006) “Comparison of two different processes to synthesize biodiesel by waste cooking oil.” Journal of Molecular Catalysis A: Chemical 252(1-2): 107-112.
    連結:
  66. 76. Wang, L. W. Y., D. Lu, S. Hu and H. Han. (2010) “Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil.” Fuel 89(9): 2267-2271.
    連結:
  67. 78. Wu, H., J. Zhang, Q. Wei, J. Zheng and J. Zhang (2013) “Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts.” Fuel Processing Technology 109: 13-18.
    連結:
  68. 79. Xie, W., Z. Yang and H. Chun (2007) “Catalytic Properties of Lithium-Doped ZnO Catalysts Used for Biodiesel Preparations.” Industrial & Engineering Chemistry Research 46(24): 7942-7949.
    連結:
  69. 80. Xie, W. and L. Zhao. (2013) “Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts.” Energy Conversion and Management 76: 55-62.
    連結:
  70. 81. Yan, S., C. DiMaggio, S. Mohan, M. Kim, S. O. Salley and K. Y. Simon Ng (2010) “Advancements in Heterogeneous Catalysis for Biodiesel Synthesis.” Topics in Catalysis 53(11): 721-736.
    連結:
  71. 82. Yang, Z. and W. Xie (2007) “Soybean oil transesterification over zinc oxide modified with alkali earth metals.” Fuel Processing Technology 88(6): 631-638.
    連結:
  72. 83. Yoosuk, B., P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul and K. Faungnawakij (2010) “Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein.” Chemical Engineering Journal 162(1): 58-66.
    連結:
  73. 84. Zabeti, M., W. M. A. W. Daud and M. K. Aroua. (2010) “Biodiesel production using alumina-supported calcium oxide: An optimization study.” Fuel Processing Technology 91(2): 243-248.
    連結:
  74. 85. Zhang, P., Q. Han, M. Fan and P. Jiang. (2014) “Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance.” Applied Surface Science 317: 1125-1130.
    連結:
  75. 86. Zou, H. and M. Lei (2012) “Optimum process and kinetic study of Jatropha curcas oil pre-esterification in ultrasonical field.” Journal of the Taiwan Institute of Chemical Engineers 43(5): 730-735.
    連結:
  76. 87. 田偲穎,2015,「以超音波輔助半連續式痲瘋油轉酯化程序產製生質柴油」,碩士論文,國立臺灣大學環境工程研究所碩士論文。
    連結:
  77. 91. 吳憶伶,2009,「磁性觸媒應用於催化濕式氧化程序處理水中溶解性污染物之研究」,國立臺灣大學環境工程學研究所碩士論文,台北。
    連結:
  78. 5. Brunauer, S., Deming, L.S.; Deming, W.S. & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-32.
  79. 9. Chikazumi, S. (1964) Physics of Magnetism, John Wiley & Sons, Inc., New York, USA.
  80. 21. Goff , M. J., N. S. Bauer, S. Lopes, W. R. Sutterlin and G. J. Suppes (2004) “Acid-catalyzed alcoholysis of soybean oil.” Journal of the American Oil Chemists' Society 81(4): 415-420.
  81. http://www.rendermagazine.com/pages/pastarticles2006.html (accessed on 30 Aug 2006).
  82. 32. Karlin, K.D. (2002) “Progress in Inorganic Chemistry” Vol. 51, 1st ed., Wiley-Interscience, Malden, MA, USA
  83. 43. Lotero, E., Y. J. Liu, D.E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, (2005) “Synthesis of biodiesel via acid catalysis.” Industrial & Engineering Chemistry Research 44(14): 5353-5363.
  84. 45. Lu, H., Y. Liu, H. Zhou, Y. Yang, M. Chen and B. Liang (2009) “Production of biodiesel from Jatropha curcas L. oil.” Computers & Chemical Engineering 33(5):1091-1096.
  85. 46. Ma, F. and M. A. Hanna (1999) “Biodiesel production: a review.” Bioresource Technology 70(1): 1–15.
  86. 49. Marinković, D. M., M. V. Stanković, A.V. Veličković, J. M. Avramović, M. R. Miladinović, O. O. Stamenković, V. B. Veljković and D. M. Jovanović. (2016) “Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives.” Renewable and Sustainable Energy Reviews 56: 1387–1408.
  87. 61. Sawin J and E. Martinot (2015) “Renewables 2015 global status report.” Renewable Energy Policy Network, Pairs.
  88. 72. USEPA (United States Environmental Protection Agency) (2002) “ National Biodiesel Board and A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions.” Draft Technical Report.
  89. 77. Wright, I.D. and N.A.J.M. Sommerdijk (2000) “Sol-Gel Materials: Chemistry and Applications” 1 st ed., Taylor & Francis, Oxford, UK.
  90. 88. 李宗育,2005,「利用廢棄沙拉油製造生質柴油之研究」,碩士論文,高苑科技大學高分子環保材料研究所。
  91. 89. 李唐、張志毓,2006,「臺灣潛在的生質柴油料源料其對產出生質柴油性的探討」,生物技術與綠色農業研討會專刊,127輯,pp. 67-73。
  92. 90. 余致安,2006,「柴油車使用生質柴油之汙染排放與動力分析之研究」,國立中正大學機械工程學系碩士論文。
  93. 92. 吳贊鐸,1999,「替代燃料對柴油引擎性能毒性與污染特性分析之研究」,國立台灣大學造船及海洋工程研究所博士學位論文。
  94. 93. 何美玥,2007,「台灣永續能源政策」,行政院經濟建設委員會。
  95. 94. 宋勇徵,2006,「生質柴油國外發展演進」,台肥新創事業處,第47卷3期,pp 45-50。
  96. 95. 林俊義,2007,「打造綠色油田-生質能源之開發」,農委會農業試驗所。
  97. 96. 黃清彥,2013,「Fe3O4與SiO2包覆Fe3O4磁性奈米粒子表面性質之探討」,國立高雄應用科技大學模具工程系碩士論文,高雄。
  98. 97. 黃韻勳,2015,「解讀《2015能源技術展望》」能源報導,2015年7月,pp. 44-47。
  99. 98. 楊國輝和廖淑慧著,2000,「應用電磁學」,五南出版,台北。
  100. 99. 經濟部能源局(Taiwan Bureau of Energy, TBOE),2012,「2012 年能源產業技術白皮書」。
  101. 100. 經濟部能源局(TBOE),2014,「2014 年能源產業技術白皮書」。
  102. 101. 經濟部能源局(TBOE),2015,「生質柴油推動」。http://www.biodiesel-tw.org/(2016/07)
  103. 102. 經濟部標準檢驗局(Taiwan Bureau of Standards, Metrology & Inspection, TBSMI),2011,生質柴油-脂肪酸甲酯。Standards of Biodiesel of CNS (Chinese National Standard) (CNS 15072) in Biodiesel-Fatty acid methyl ester, Taipei, Taiwan: Bureau of Standards, Metrology & Inspection, 2011.
  104. 103. 劉文宗,2007,「生質柴油發展與工業化設計」,永續產業發展雙月刊,第35期pp. 32-39。
  105. 104. 蔡煥修,1992,「磁性流體製程與性質之基礎研究」,國立成功大學礦冶及材料科學研究所碩士論文,台南。
  106. 105. 謝志強、殷正華,2008,「全球生質能源產業與技術發展現況與趨勢」,科技發展政策報導,第5期,pp. 15-39。
  107. 106. 藍硯琳,2015,「生質能源市場整合新思維」,卓越雜誌,第351期,p. 42。
被引用次数
  1. 鄭雅憶(2017)。磁性固體酸觸媒之合成及其應用於高酸價油品之生質柴油製造。臺灣大學環境工程學研究所學位論文。2017。1-131。