题名

金領結型奈米天線之非線性散射現象及其機制探究

并列篇名

Nonlinear Scattering in Single Gold Bowtie Nanoantennae and Investigations of its Mechanism

DOI

10.6342/NTU201600948

作者

李冠郁

关键词

金領結型奈米天線 ; 電漿子學 ; 非線性散射 ; 截面積 ; 場提升強度 ; 時域有限差分法 ; Gold Bowtie Nanoantenna ; Plasmonics ; Nonlinear Scattering ; Cross Section ; Field Enhancement ; Finite Difference Time Domain

期刊名称

國立臺灣大學物理學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

朱士維

内容语文

英文

中文摘要

我們曾使用波長在電漿共振峰內的高強度雷射照射單一金奈米球,並觀測到非線性散射現象。該現象已經被應用在超解析顯微術的領域,利用類似於受激輻射耗散 (stimulated emission depletion, STED) 或飽和激發 (saturation excitation, SAX) 的實驗架設,就能夠實現以不會光致褪色(photo-bleaching)的散射訊號做為對比的超解析顯微術。波長相關性實驗也指出,當入射波長越接近共振峰時,觀察到非線性效應所需的照射強度也就越低,故非線性散射現象與侷域表面電漿子共振現象 (localized surface plasmon resonance, LSPR) 高度相關,但詳細的原理仍尚未被解明。LSPR 導致的最廣為人知的結果包含了增加散射、吸收截面積 (cross section) 以及在近場範圍內的巨大場提升強度 (field enhancement)。這兩項效應皆有可能是非線性散射背後機制的主導因子,但在金奈米球的實驗中並無法輕易調控這兩項因子的強度,故無法用以決定主導因子。因此,在本研究中,金領結型奈米天線 (gold bowtie nanoantenna) 被用以區分兩項因子造成的效應,由於對稱性的破壞,金領結型奈米天線具有兩種正交的共振模態,分別對應到平行或垂直領結軸的偏振方向,這兩個共振模態可以同時擁有類似大小的截面積和差距極大的場提升強度。截面積與場提升強度都可藉由時域有限差分法 (finite difference time domain, FDTD) 計算得出數值。將觀察到非線性散射所需的雷射照射強度的變化與上述兩項因子的變化做比較,可排除場提升強度做為主導因子的可能性,並可給出背後機制相關的洞見以及對未來找尋新的非線性散射材料或結構有莫大的幫助。

英文摘要

Nonlinear scattering has been observed in a single gold nanosphere (GNS) under high-intensity laser illumination with wavelength inside the plasmonic resonance band. It has been already applied to novel non-bleaching super-resolution microscopy based on scattering, with STED-like and SAX-like setup. Previous spectral analyses show nonlinear scattering is highly related to localized surface plasmon resonance (LSPR) in the gold nanoparticle. When the applied wavelength is closer to the resonance peak, the nonlinearity becomes observable in lower excitation intensity. However, the underlying mechanism is not fully unterstood. LSPR in metallic nanoparticles is known for enhancing both the scattering/absorption cross section and the large field enhancement in near-field. Both factors are plausible to account for the mechanism of nonlinear scattering. It is not simple to manipulate cross section and field enhancement in a single GNS due to its spherical symmetry, so the dominant factor can not been determined with nanosphere experiment only. In this study, gold bowtie nanoantennae (GNA) are used to distinguish the effect of these factors. Because of the symmetry breaking, there are two orthogonal resonance modes in GNAs with polarization either parallel or perpendicular to the bowtie axis. These two modes can give comparable cross section but significantly distinct field enhancement. The magnitude of cross section and field enhancement can be calculated by finite difference time domain method. By comparing the change of the intensity threshold, when nonlinearity becomes observable, with the change in cross section and field enhancement, one can determine the dominating factor. The result eliminates the possibility of field enhancement being dominant, giving insights of the underlying mechanism related to absorption cross section. The findings would help searching for more materials or structures for nonlinear scattering.

主题分类 基礎與應用科學 > 物理
理學院 > 物理學系
参考文献
  1. [1] H. Lee, R. Oketani, Y. T. Huang, K. Y. Li, Y. Yonemaru, M. Yamanaka, S. Kawata, K. Fujita, and S. W. Chu. Point spread function analysis with saturable and reverse saturable scattering. Optics Express, 22(21):26016–26022, 2014.
    連結:
  2. [2] S. W. Chu, H. Y. Wu, Y. T. Huang, T. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita. Saturation and reverse saturation of scattering in a single plasmonic nanoparticle. ACS Photonics, 1(1):32–37, 2014.
    連結:
  3. [3] S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. The Journal of Physical Chemistry Letters, 4(3):496–501, 2013.
    連結:
  4. [4] R. H. Ritchie. Plasma losses by fast electrons in thin films. Physical Review, 106(5):874–881, 1957.
    連結:
  5. [5] M. Kauranen and A. V. Zayats. Nonlinear plasmonics. Nature Photonics, 6(11):737–748, 2012.
    連結:
  6. [6] H. A. Atwater and A. Polman. Plasmonics for improved photovoltaic devices. Nature Materials, 9(3):205–213, 2010.
    連結:
  7. [7] X. Huang and M. A. El-Sayed. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1):13–28, 2010.
    連結:
  8. [9] C. F. Bohren and D. R. Huffman. Absorption and scattering of light by small particles. Wiley, New York, 1983.
    連結:
  9. [11] X. Huang and M. A. El-Sayed. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine, 47(1):1–9, 2011.
    連結:
  10. [12] K. R. Catchpole and A. Polman. Plasmonic solar cells. Optics Express, 16(26):21793–21800, 2008.
    連結:
  11. [13] M. Geiselmann, R. Marty, J. Renger, F. J. Garcia de Abajo, and R. Quidant. Deterministic optical-near-field-assisted positioning of nitrogen-vacancy centers. Nano Letters, 14(3):1520–1525, 2014.
    連結:
  12. [14] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva. Searching for better plasmonic materials. Laser & Photonics Reviews, 4(6):795–808, 2010.
    連結:
  13. [15] A. Boltasseva and H. A. Atwater. Low-loss plasmonic metamaterials. Science, 331(6015):290–291, 2011.
    連結:
  14. [16] N. Bloembergen. Nonlinear optics. World Scientific, Hong Kong, 1996.
    連結:
  15. [18] J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen. Optical parametric generation and amplification in barium borate and lithium triborate crystals. Journal of the Optical Society of America B, 10(9):1758–1764, 1993.
    連結:
  16. [19] W. R. Zipfel, R. M. Williams, and W. W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 21(11):1369–1377, 2003.
    連結:
  17. [20] R. M. Williams, W. R. Zipfel, and W. W. Webb. Interpreting second-harmonic generation images of collagen i fibrils. Biophysical Journal, 88(2):1377–1386, 2005.
    連結:
  18. [21] X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nature Protocols, 7(4):654–669, 2012.
    連結:
  19. [22] M. I. Gallant and H. M. van Driel. Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium. Physical Review B, 26(4):2133–2146, 1982.
    連結:
  20. [23] O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky. Super-resolution in label-free photomodulated reflectivity. Nano Letters, 15(2):1362–1367, 2015.
    連結:
  21. [24] A. Barth and C. Zscherp. What vibrations tell us about proteins. Quarterly Reviews of Biophysics, 35(4):369–430, 2002.
    連結:
  22. [25] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Letters, 7(2):238–242, 2007.
    連結:
  23. [26] D. Bar-Lev and J. Scheuer. Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Optics Express, 21(24):29165–29178, 2013.
    連結:
  24. [27] K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin. Enhanced second-harmonic generation from double resonant plasmonic antennae. Optics Express, 20(12):12860–12865, 2012.
    連結:
  25. [28] E. Boisselier and D. Astruc. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38(6):1759–1782, 2009.
    連結:
  26. [29] S. M. Nie and S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science, 275(5303):1102–1106, 1997.
    連結:
  27. [30] A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita. Raman and sers microscopy for molecular imaging of live cells. Nature Protocols, 8(4):677–692, 2013.
    連結:
  28. [31] R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Physical Review B, 62(19):13160–13166, 2000.
    連結:
  29. [32] Y. C. Gao, X. R. Zhang, Y. L. Li, H. F. Liu, Y. X. Wang, Q. Chang, W. Y. Jiao, and Y. L. Song. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Optics Communications, 251(4-6):429–433, 2005.
    連結:
  30. [33] H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Applied Physics Letters, 88(8):083107, 2006.
    連結:
  31. [34] V. Liberman, M. Sworin, R. P. Kingsborough, G. P. Geurtsen, and M. Rothschild. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles. Journal of Applied Physics, 113(5):053107, 2013.
    連結:
  32. [35] D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nature Physics, 3(11):807–812, 2007.
    連結:
  33. [36] K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev. Ultrafast active plasmonics. Nature Photonics, 3(1):55–58, 2009.
    連結:
  34. [37] C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’ Aguanno, and A. Alò. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Physical Review Letters, 108(26):263905, 2012.
    連結:
  35. [38] S. J. Ding, F. Nan, D. J. Yang, X. L. Liu, Y. L. Wang, L. Zhou, Z. H. Hao, and Q. Q. Wang. Largely enhanced saturable absorption of a complex of plasmonic and molecular-like au nanocrystals. Scientific Reports, 5:9735, 2015.
    連結:
  36. [39] S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita. Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Physical Review Letters, 112(1):017402, 2014.
    連結:
  37. [40] K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata. High-resolution confocal microscopy by saturated excitation of fluorescence. Physical Review Letters, 99(22):228105, 2007.
    連結:
  38. [41] H. Y. Wu, Y. T. Huang, P. T. Shen, H. Lee, R. Oketani, Y. Yonemaru, M. Yamanaka, S. Shoji, K. H. Lin, C. W. Chang, S. Kawata, K. Fujita, and S. W. Chu. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging. Scientific Reports, 6:24293, 2016.
    連結:
  39. [42] H. Fischer and O. J. F. Martin. Engineering the optical response of plasmonic nanoantennas. Optics Express, 16(12):9144–9154, 2008.
    連結:
  40. [43] G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, and J. R. Qiu. Fabrication of periodical structure and shape-induced modulating spectroscopy of au nanoparticles. Optics Communications, 285(9):2472–2477, 2012.
    連結:
  41. [45] S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim. High-harmonic generation by resonant plasmon field enhancement. Nature, 453(7196):757–760, 2008.
    連結:
  42. [46] T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Physical Review Letters, 103(25):257404, 2009.
    連結:
  43. [47] K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint. Nonlinear optical response from arrays of au bowtie nanoantennas. Nano Letters, 11(1):61–65, 2011.
    連結:
  44. [49] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 3(11):654–657, 2009.
    連結:
  45. [50] A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Letters, 6(3):355–360, 2006.
    連結:
  46. [51] N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy. Nano Letters, 10(12):4952–4955, 2010.
    連結:
  47. [52] T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nature Communications, 2:333, 2011.
    連結:
  48. [53] A. Taflove and S. C. Hagness. Computational electrodynamics : the finite-difference time-domain method. Artech House, London, 2005.
    連結:
  49. [54] M. Born and E. Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon Press, New York, 1980.
    連結:
  50. [55] S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Letters, 5(3):515–518, 2005.
    連結:
  51. [56] S. Link and M. A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3):409–453, 2000.
    連結:
  52. [57] N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel. Nonlinear absorption in au films: Role of thermal effects. Physical Review B, 75(15):155426, 2007.
    連結:
  53. [8] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nature Materials, 7(6):442–453, 2008.
  54. [10] H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America, 102(44):15752–15756, 2005.
  55. [17] R. Boyd. Nonlinear optics. Academic Press, Burlington, 2008.
  56. [44] G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu. Optical properties of gold nano-bowtie structures. Optics Communications, 294:213–217, 2013.
  57. [48] N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New Journal of Physics, 15(9):093027, 2013.