题名

運用基因工程嵌入伴護蛋白功能區塊以建構新型的角蛋白酶

并列篇名

Engineering novel keratinases through an intramolecular chaperone swapping approach

DOI

10.6342/NTU.2014.01573

作者

黃婷資

关键词

角蛋白酶 ; 類枯草桿菌蛋白 ; Aqualysin ; 內分子伴護蛋白酶 ; 功能區置換 ; keratinase ; subtilisin-like protease ; aqualysin ; intramolecular chaperone ; domain swapping

期刊名称

臺灣大學生化科學研究所學位論文

卷期/出版年月

2014年

学位类别

碩士

导师

吳世雄

内容语文

英文

中文摘要

角蛋白酶是一種蛋白質水解酵素,他能降解結構非常堅硬且一般酵素無法分解的的角蛋白。近年來,這類角蛋白酶已漸漸受到大眾的重視,無論是在環境保護或是生物技術應用方面,都具有很高的應用價值。然而,雖然目前已有很多角蛋白酶被發現,但其複雜的水解機制仍然存留許多不解。 先前,我們成功地從台灣本土嗜熱菌分離出一個新的角蛋白酶,從結構比對結果,我們發現一個與之結構極為相似的蛋白質,其命名為aqualysin,此蛋白酶來自另一株更耐高溫的嗜熱菌Thermus aquaticus,卻從未有相關文獻指出其具有角蛋白酶的活性;因此,我們利用偶氮角蛋白 (azokeratin) 當作水解受質,證實aqualysin確實具有高活性的角蛋白水解功能,並測得其活性最佳條件。此外,藉由分析具有不同功能性片段的aqualysin,我們發現此蛋白酶必須在有N端內分子伴護蛋白區塊 (intramolecular chaperone, NAQ) 的存在下,才能將蛋白適當摺疊成具有活性的構型。為了進一步證明NAQ是否具有角蛋白水解功能的記憶,並引導蛋白酶摺疊成具有角蛋白酶活性的構型,我們將NAQ置換到來自台灣本土嗜熱菌,其不具角蛋白酶活性的類枯草桿菌蛋白SPR2216之中。幸運地,SPR2216在嵌入NAQ之後,成功的獲得了原本並不具備的角蛋白酶活性;而這也證明了NAQ 對於幫助蛋白酶區塊獲得角蛋白水解功能記憶的過程中,扮演了非常重要的角色。因此,運用此基因工程的方法,將能提供有效的資訊來建構出新型且具有不同特性的角蛋白酶。至於NAQ是如何幫助蛋白酶摺疊,以及更細節的分子機制,還需要更進一步的研究探討。

英文摘要

Keratinases are proteolytic enzymes responsible for the degradation of highly recalcitrant keratin substrates. They have gradually captured the attention in the realms of environmental and biotechnological application. Although these enzymes have widely been discovered, the complex mechanism of keratinolysis has not yet been well-understood. Previously, we successfully identified a novel keratinase from Meiothermus taiwanensis. Based on the structural similarity, we found a subtilisin-like protease from Thermus aquaticus named aqualysin, which has not yet been reported as a keratinase. Based on azokeratin assays, we confirmed that aqualysin is a highly efficient keratinase. Furthermore, the results from the truncate studies suggested that propeptide of aqualysin (NAQ), an intramolecular chaperone, was an indispensable domain for the keratinolytic activity. To verify whether NAQ possessed the protein memory for keratinolysis and guided protease to fold as a keratinase, we swapped NAQ to a subtilisin-like protease, SPR2216 from Meiothermus taiwanensis, which possessed no keratinolytic activity. Fortunately, we successfully obtained NAQ-fused SPR2216 which possessed gain-of-function for keratinolysis. Importantly, we demonstrated the significant role of NAQ for protease domains to acquire the memory of “keratinase-fold”. These findings would be very useful for generating new keratinases with additional characteristics. However, more studies should be made to further elucidate the detailed molecular mechanisms of how NAQ helped protease domain fold.

主题分类 生命科學院 > 生化科學研究所
生物農學 > 生物科學
参考文献
  1. 1. Gupta, R., and Ramnani, P. (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70, 21-33
    連結:
  2. 2. Akhtar, W., and Edwards, H. G. (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochim Acta A Mol Biomol Spectrosc 53A, 81-90
    連結:
  3. 3. Papadopoulos, M. C. (1986) The Effect of Enzymatic Treatment on Amino-Acid Content and Nitrogen Characteristics of Feather Meal. Animal Feed Science and Technology 16, 151-156
    連結:
  4. 4. Evans, K. L., Crowder, J., and Miller, E. S. (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46, 1004-1011
    連結:
  5. 5. Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C., and Mignon, B. (2001) Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol 39, 269-275
    連結:
  6. 6. Allpress, J. D., Mountain, G., and Gowland, P. C. (2002) Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett Appl Microbiol 34, 337-342
    連結:
  7. 7. Lee, H., Suh, D. B., Hwang, J. H., and Suh, H. J. (2002) Characterization of a keratinolytic metalloprotease from Bacillus sp. SCB-3. Appl Biochem Biotechnol 97, 123-133
    連結:
  8. 8. Brandelli, A. (2008) Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond. Food and Bioprocess Technology 1, 105-116
    連結:
  9. 9. Brandelli, A., Daroit, D. J., and Riffel, A. (2010) Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology 85, 1735-1750
    連結:
  10. 10. Ramnani, P., Singh, R., and Gupta, R. (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51, 191-196
    連結:
  11. 11. Gupta, R., Sharma, R., and Beg, Q. K. (2013) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33, 216-228
    連結:
  12. 12. Kim, J. S., Kluskens, L. D., de Vos, W. M., Huber, R., and van der Oost, J. (2004) Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. Journal of molecular biology 335, 787-797
    連結:
  13. 13. Williams, C. M., Richter, C. S., Mackenzie, J. M., and Shih, J. C. (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56, 1509-1515
    連結:
  14. 14. Lin, X., Lee, C.-G., Casale, E. S., and Shih, J. C. (1992) Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Applied and Environmental Microbiology 58, 3271-3275
    連結:
  15. 15. Riffel, A., and Brandelli, A. (2006) Keratinolytic bacteria isolated from feather waste. Brazilian Journal of Microbiology 37, 395-399
    連結:
  16. 16. Tamilmani, P., Umamaheswari, A., Vinayagam, A., and Prakash, B. (2008) Production of an extra cellular feather degrading enzyme by Bacillus licheniformis isolated from poultry farm soil in Namakkal district (Tamilnadu). International Journal of Poultry Science 7, 184-188
    連結:
  17. 17. Vesela, M., and Friedrich, J. (2009) Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnology and Bioprocess Engineering 14, 84-90
    連結:
  18. 18. Vigneshwaran, C., Shanmugam, S., and Kumar, T. S. (2010) Screening and Characterization of Keratinase from Bacillus licheniformis Isolated From Namakkalpoultry Farm. Researcher 2, 89-96
    連結:
  19. 20. Narasimha Murthy, S., Wiskirchen, D. E., and Paul Bowers, C. (2007) Iontophoretic drug delivery across human nail. Journal of Pharmaceutical Sciences 96, 305-311
    連結:
  20. 21. Pandeeti, E. V., Pitchika, G. K., Jotshi, J., Nilegaonkar, S. S., Kanekar, P. P., and Siddavattam, D. (2011) Enzymatic depilation of animal hide: identification of elastase (LasB) from Pseudomonas aeruginosa MCM B-327 as a depilating protease. PLoS One 6, e16742
    連結:
  21. 22. Radha, S., and Gunasekaran, P. (2007) Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol 103, 1301-1310
    連結:
  22. 24. Wang, P., Wang, Q., Cui, L., Gao, M., and Fan, X. (2011) The combined use of cutinase, keratinase and protease treatments for wool bio-antifelting. Fibers and Polymers 12, 760-764
    連結:
  23. 25. Kumar, R., Balaji, S., Uma, T., Mandal, A., and Sehgal, P. (2008) Optimization of influential parameters for extracellular keratinase production of Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal-a biowaste management. Applied biochemistry and biotechnology 160, 30-39
    連結:
  24. 26. Saha, S., and Dhanasekaran, D. (2010) Isolation and screening of keratinolytic actinobacteria form keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Current Research Journal of Biological Sciences 2, 124-131
    連結:
  25. 27. Okoroma, E. A., Purchase, D., Garelick, H., Morris, R., Neale, M. H., Windl, O., and Abiola, O. O. (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS One 8, e68099
    連結:
  26. 28. Siezen, R. J., and Leunissen, J. A. M. (1997) Subtilases: The superfamily of subtilisin-like serine proteases. Protein Science 6, 501-523
    連結:
  27. 29. Siezen, R. J., Renckens, B., and Boekhorst, J. (2007) Evolution of prokaryotic subtilases: Genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins: Structure, Function, and Bioinformatics 67, 681-694
    連結:
  28. 30. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res 11, 7911-7925
    連結:
  29. 32. Vasantha, N., Thompson, L. D., Rhodes, C., Banner, C., Nagle, J., and Filpula, D. (1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159, 811-819
    連結:
  30. 33. Jacobs, M., Eliasson, M., Uhlen, M., and Flock, J. I. (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13, 8913-8926
    連結:
  31. 35. Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H., and Inouye, M. (1988) Control of Folding of Proteins Secreted by a High Expression Secretion Vector, Pin-Iii-Ompa - 16-Fold Increase in Production of Active Subtilisin-E in Escherichia-Coli. Bio-Technol 6, 948-950
    連結:
  32. 36. Winther, J. R., and Sorensen, P. (1991) Propeptide of Carboxypeptidase-Y Provides a Chaperone-Like Function as Well as Inhibition of the Enzymatic-Activity. Proceedings of the National Academy of Sciences of the United States of America 88, 9330-9334
    連結:
  33. 38. Shinde, U., Li, Y. Y., Chatterjee, S., and Inouye, M. (1993) Folding Pathway Mediated by an Intramolecular Chaperone. Proceedings of the National Academy of Sciences of the United States of America 90, 6924-6928
    連結:
  34. 39. Shinde, U., and Inouye, M. (1993) Intramolecular Chaperones and Protein-Folding. Trends in Biochemical Sciences 18, 442-446
    連結:
  35. 40. Zhu, X. L., Ohta, Y., Jordan, F., and Inouye, M. (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483-484
    連結:
  36. 41. Eder, J., Rheinnecker, M., and Fersht, A. R. (1993) Folding of Subtilisin Bpn' - Role of the Pro-Sequence. Journal of molecular biology 233, 293-304
    連結:
  37. 42. Strausberg, S., Alexander, P., Wang, L., Schwarz, F., and Bryan, P. (1993) Catalysis of a Protein-Folding Reaction - Thermodynamic and Kinetic-Analysis of Subtilisin Bpn' Interactions with Its Propeptide Fragment. Biochemistry 32, 8112-8119
    連結:
  38. 43. Silen, J. L., and Agard, D. A. (1989) The Alpha-Lytic Protease Pro-Region Does Not Require a Physical Linkage to Activate the Protease Domain Invivo. Nature 341, 462-464
    連結:
  39. 44. Baker, D., Sohl, J. L., and Agard, D. A. (1992) A Protein-Folding Reaction under Kinetic Control. Nature 356, 263-265
    連結:
  40. 45. Lee, Y. C., Ohta, T., and Matsuzawa, H. (1992) A Noncovalent Nh2-Terminal Pro-Region Aids the Production of Active Aqualysin-I (a Thermophilic Protease) without the Cooh-Terminal Pro-Sequence in Escherichia-Coli. Fems Microbiology Letters 92, 73-78
    連結:
  41. 46. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding Pathway Mediated by an Intramolecular Chaperone PROPEPTIDE RELEASE MODULATES ACTIVATION PRECISION OF PRO-SUBTILISIN. Journal of Biological Chemistry 276, 44427-44434
    連結:
  42. 47. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520-522
    連結:
  43. 48. Bryan, P. N. (2002) Prodomains and protein folding catalysis. Chemical reviews 102, 4805-4816
    連結:
  44. 49. Chen, Y.-J., and Inouye, M. (2008) The intramolecular chaperone-mediated protein folding. Current Opinion in Structural Biology 18, 765-770
    連結:
  45. 50. Shinde, U., and Inouye, M. (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Seminars in Cell & Developmental Biology 11, 35-44
    連結:
  46. 51. Eder, J., and Fersht, A. R. (1995) Pro-sequence-assisted protein folding. Molecular Microbiology 16, 609-614
    連結:
  47. 54. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding pathway mediated by an intramolecular chaperone - Propeptide release modulates activation precision of pro-subtilisin. Journal of Biological Chemistry 276, 44427-44434
    連結:
  48. 55. Matsuzawa, H., Hamaoki, M., and Ohta, T. (1983) Production of Thermophilic Extracellular Proteases (Aqualysin-I and Aqualysin-Ii) by Thermus-Aquaticus Yt-1,an Extreme Thermophile. Agricultural and biological chemistry 47, 25-28
    連結:
  49. 56. Kwon, S. T., Terada, I., Matsuzawa, H., and Ohta, T. (1988) Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteristics of the deduced primary structure of the enzyme. Eur J Biochem 173, 491-497
    連結:
  50. 57. Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T. F. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458-462
    連結:
  51. 58. Yanagida, N., Uozumi, T., and Beppu, T. (1986) Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J Bacteriol 166, 937-944
    連結:
  52. 59. Lin, S. J., Yoshimura, E., Sakai, H., Wakagi, T., and Matsuzawa, H. (1999) Weakly bound calcium ions involved in the thermostability of aqualysin I, a heat-stable subtilisin-type protease of Thermus aquaticus YT-1. Biochimica et biophysica acta 1433, 132-138
    連結:
  53. 60. Kwon, S.-T., Matsuzawa, H., and Ohta, T. (1988) Determination of the positions of the disulfide bonds in aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1. Journal of biochemistry 104, 557-559
    連結:
  54. 61. Matsuzawa, H., Tokugawa, K., Hamaoki, M., Mizoguchi, M., Taguchi, H., Terada, I., Kwon, S. T., and Ohta, T. (1988) Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Eur J Biochem 171, 441-447
    連結:
  55. 62. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. The Journal of biological chemistry 276, 44427-44434
    連結:
  56. 64. Klibanov, A. M. (1995) Enzyme memory. What is remembered and why? Nature 374, 596
    連結:
  57. 65. Barr, P. J. (1991) Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1-3
    連結:
  58. 66. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520-522
    連結:
  59. 67. Bauer, C., and Jelkmann, W. (1977) Carbon dioxide governs the oxygen affinity of crocodile blood. Nature 269, 825-827
    連結:
  60. 70. Komiyama, N. H., Miyazaki, G., Tame, J., and Nagai, K. (1995) Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature 373, 244-246
    連結:
  61. 71. Schafer, G. (1992) Extremophiles: fascinating organisms with surprising capabilities. J Bioenerg Biomembr 24, 525-527
    連結:
  62. 72. Cava, F., Hidalgo, A., and Berenguer, J. (2009) Thermus thermophilus as biological model. Extremophiles 13, 213-231
    連結:
  63. 73. Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51, 711-729
    連結:
  64. 74. van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6, 213-218
    連結:
  65. 75. Pantazaki, A. A., Pritsa, A. A., and Kyriakidis, D. A. (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58, 1-12
    連結:
  66. 76. Chien, A., Edgar, D. B., and Trela, J. M. (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127, 1550-1557
    連結:
  67. 77. Eckert, K. A., and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Research 18, 3739-3744
    連結:
  68. 78. Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences 88, 7276-7280
    連結:
  69. 79. Liebl, W. (2004) Genomics taken to the extreme. Nat Biotechnol 22, 524-525
    連結:
  70. 80. Wang, T. F., and Wang, A. H. (2006) Preparation of sticky-end PCR products and ligation into expression vectors for high-throughput screening of soluble recombinant proteins. CSH protocols 2006
    連結:
  71. 81. Wang, T. F., and Wang, A. H. (2006) Preparation of vectors for high-throughput screening of soluble recombinant proteins. CSH protocols 2006
    連結:
  72. 82. Chiu, J., March, P. E., Lee, R., and Tillett, D. (2004) Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic acids research 32, e174
    連結:
  73. 84. Riffel, A., Lucas, F., Heeb, P., and Brandelli, A. (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179, 258-265
    連結:
  74. 86. Moore, S., Spackman, D. H., and Stein, W. H. (1958) Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Analytical Chemistry 30, 1185-1190
    連結:
  75. 87. Moore, S., Spackman, D. H., and Stein, W. H. (1958) Automatic recording apparatus for use in the chromatography of amino acids. Fed Proc 17, 1107-1115
    連結:
  76. 88. Prakash, P., Jayalakshmi, S. K., and Sreeramulu, K. (2010) Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol 87, 625-633
    連結:
  77. 89. Letourneau, F., Soussotte, V., Bressollier, P., Branland, P., and Verneuil, B. (1998) Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett Appl Microbiol 26, 77-80
    連結:
  78. 90. Twining, S. S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Analytical Biochemistry 143, 30-34
    連結:
  79. 91. Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., Vasileva‐Tonkova, E., Haertle, T., and Nedkov, P. (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Letters in applied microbiology 40, 335-340
    連結:
  80. 92. Uehara, R., Takeuchi, Y., Tanaka, S., Takano, K., Koga, Y., and Kanaya, S. (2012) Requirement of Ca(2+) ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Biochemistry 51, 5369-5378
    連結:
  81. References
  82. 19. BioResource-International. (2011) Recent research results at poultry science association meeting. online available: http://www.briworldwide.com/bri-presents-recent-research-results-at-poultry-science-association-meeting/.
  83. 23. Preston, R. (2002) Acne-how to prevent and overcome acne forever. International Institute of Nutritional Research
  84. 31. Stahl, M. L., and Ferrari, E. (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation. J Bacteriol 158, 411-418
  85. 34. Ikemura, H., and Inouye, M. (1988) In vitro processing of pro-subtilisin produced in Escherichia coli. The Journal of biological chemistry 263, 12959-12963
  86. 37. Richo, G. R., and Conner, G. E. (1994) Structural Requirements of Procathepsin-D Activation and Maturation. Journal of Biological Chemistry 269, 14806-14812
  87. 52. Li, Y., and Inouye, M. (1994) Autoprocessing of prothiolsubtilisin E in which active-site serine 221 is altered to cysteine. The Journal of biological chemistry 269, 4169-4174
  88. 53. Inouye, M., Fu, X., and Shinde, U. (2001) Substrate-induced activation of a trapped IMC-mediated protein folding intermediate. Nature structural biology 8, 321-325
  89. 63. Russell, A. J., and Klibanov, A. M. (1988) Inhibitor-induced enzyme activation in organic solvents. The Journal of biological chemistry 263, 11624-11626
  90. 68. Bauer, C., Forster, M., Gros, G., Mosca, A., Perrella, M., Rollema, H. S., and Vogel, D. (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. The Journal of biological chemistry 256, 8429-8435
  91. 69. Perutz, M. F., Bauer, C., Gros, G., Leclercq, F., Vandecasserie, C., Schnek, A. G., Braunitzer, G., Friday, A. E., and Joysey, K. A. (1981) Allosteric regulation of crocodilian haemoglobin. Nature 291, 682-684
  92. 83. Tomarelli, R., Charney, J., and Harding, M. L. (1949) The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. The Journal of laboratory and clinical medicine 34, 428
  93. 85. Moore, S. (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. Journal of Biological Chemistry 243, 6281-6283