题名

二氧化矽與星狀構型對左旋聚乳酸結晶行為的影響

并列篇名

Effects of SiO2 and Star Architecture on Crystallization Behavior of PLLA

DOI

10.6342/NTU.2011.01727

作者

許惇涵

关键词

聚乳酸 ; 二氧化矽 ; 星狀 ; 結晶行為 ; 型態學 ; 環狀結構 ; PLLA ; SiO2 ; star ; crystallization ; morphology ; banded structure

期刊名称

臺灣大學高分子科學與工程學研究所學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

廖文彬

内容语文

繁體中文

中文摘要

本研究主要探討添加無機物SiO2以及星狀聚乳酸,對左旋聚乳酸兩結晶結構α與α’結晶行為以及結晶型態學上的影響。 聚乳酸結晶時,會因結晶溫度的不同而產生不同的結晶結構,在較高的結晶溫度下形成排列較緊密的α晶體結構;在較低的結晶溫度下,形成排列相對較鬆散的α’晶體結構;而在這之間的溫度,則形成兩相共存的晶體結構。我們將左旋聚乳酸混摻二氧化矽,以及合成三臂的星狀左旋聚乳酸,利用POM、DSC、XRD等儀器觀察其結晶共存區間的有何改變。   當左旋聚乳酸加入SiO2顆粒,其提供了異質成核的表面,加速結晶晶核的形成;星狀左旋聚乳酸則因為含有核心結構,在結晶時核心會被視為雜質而排到晶片之外,不易形成穩定的晶核,結晶時需要更久的時間進行,兩種結晶結構受到的影響程度不同,導致共存區的結晶競爭能力改變,PLLA/SiO2系統的α與α’共存區溫度範圍跟單純PLLA系統比較似乎沒有差異,而星狀左旋聚乳酸的共存區溫度範圍則劇烈下移,為了更進一步了解線性與星狀構型之間的差異,我們做了不同比例的線性與星狀PLLA混摻系統來連結兩者,並藉由玻璃轉移溫度、平衡熔點等提供的訊息,由分子鏈運動能力、過冷度與結晶時晶片摺疊鏈端表面自由能來探討競爭的差異。 結晶型態方面,摻入SiO2顆粒後的左旋聚乳酸仍是典型黑十字球晶,星狀PLLA則在較高結晶溫度球晶會開始出現環狀結構,線性與星狀PLLA混摻系統球晶環狀結構出現的溫度則隨線性PLLA比例增加而提高。

英文摘要

The focus of this research is how SiO2-added and architecture affect α and α’crystal structures and morphology of PLLA. PLLA polymer chains packed closely α form crystal structure at higher crystallization temperature, and loosely α’ form crystal structure at lower crystallization temperature. Two crystal structures can co-exist at moderate temperatue. It is investigated by POM, DSC and XRD to observe the crystal structures changes of PLLA/ SiO2 and 3-ram PLLA, then compared with typical linear PLLA system. When SiO2 is added, it provides heterogenous nucleation surface to accelerate the formation of crystal nuclei; in the contrast, star-shaped PLLA is difficult to form stable nuclei and requires longer crystallization time due to the core unit which is considered as impurity and is excluded from lamellae. The two factors affect the two crystal structures in varying degree, resulting in coexistence zone change. The α and α’ coexistence zone of PLLA/SiO2 system seems the same to pure PLLA system and that is much lower of star-shaped PLLA system. In order to further understand the variations from linear to star-shaped PLLA, different proportion blends of linear and star PLLA are used to link the relationship. Furthermore, it is discussed by the aspects of chain mobility, degree of undercooling and surface free energy of chain folding from the information of glass transition temperature, equilibrium melting temperature and the other basic physical properties. On the morphology of PLLA, it is typical Maltese cross type spherulite in PLLA/SiO2 system, while there is ring-banded type spherulite appearing in Star-shaped PLLA system. In the blended system of linear and star PLLA, the temperature of ring-banded spherulite appearing is rasing with the proportion of linear PLLA increasing.

主题分类 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
参考文献
  1. 3. Schaefgen, J.; Flory, P. J., J. Am. Chem. Soc.1948,70,2709
    連結:
  2. 4. Kricheldorf, H. R.; Adebahr, T., Makromol Chem.1993,194,2103
    連結:
  3. 6. Simms, J.A., Rubber Chem. Technol. 1991,64,139
    連結:
  4. 7. Webster, O. W., Makromol. Chem., Macromol. Symp.1990,33,133
    連結:
  5. 9. Huffman D. R., Nature 1985,318,162
    連結:
  6. 12. Liu, Y.; Pan, C. Jourmal of Polymer Scienc: Part A: Polymer Chemistry 1997,35, 3403
    連結:
  7. 14. Sutherland, R. J.; Rhodes, R. B., U.S. Pat.1994,5369564
    連結:
  8. 16. Matsuka, H., Japanese Pat. 1989,02189307
    連結:
  9. 18. Richard, A. G. ; Bhanu, K. Science 2002,297,803
    連結:
  10. 28. M. L. Di Lorenzo, European Polymer Journal 2005,41,569–575
    連結:
  11. 30. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi, K. Crystallization behavior of poly(l-lactic acid). Polymer 2006,47:7554–63
    連結:
  12. 31. Vahik K. and Darrin J. P. Chem. Mater. 2003,15,4317-4324
    連結:
  13. 36. J. Kalish, S.L. Hsu, American Physical Society, APS March Meeting 2010,15-19
    連結:
  14. 41. Turnbull, D.; Fisher, J. C.J. Chem. Phys. 1949,17,71
    連結:
  15. 44. Schultz, J. M. Polymer Material Science 1974, Prentice Hall, Englewood Cliffs, New Jersey
    連結:
  16. 45. Lauritzen, J. I. ; Hoffman,J. D. J. Res. Nat. Bur. Std. 1960, 64A,73
    連結:
  17. 46. Sadler, D.M. ; Gilmer, G.H. Polymer 1984, 25,1446
    連結:
  18. 48. W. W. Doll and J. B. Lando, J. Macromol. Sci. (B) 1970,4, 897
    連結:
  19. 51. W.C. Lai, W.B. Liau, L.Y. Yang, J. Appl. Polym. Sci. 2008,110, 3616–3623
    連結:
  20. 54. Antwerpen, F.; Krevelen, D. W. J. Polym. Sci.Part B 1972, 10, 2423.
    連結:
  21. 55. Suzuki, T.; Kavacs, A. J. Polym. J. 1970, 1, 82.
    連結:
  22. 57. J. D. Hoffman, G. T. Davis and J. I. Lauritzen, Treatise on solid State Chemistry, 1976,3,497
    連結:
  23. 64. B. Morra, R. S. Stein, J. Polym. Sci., Polym. Phys. Ed. 1982,20,2261
    連結:
  24. 1. Pengju, P.; Zhichao, L.; Bo, Z.; Tungalag D.; Yoshio, I., Macromolecules 2009,42,3374
  25. 2. K. Mei(梅愷), 國立台灣大學碩士論文,2009
  26. 5. Higashimura, T.; Sawamoto, M.; Kanaoka S., Macromolecules 1992,25,6414
  27. 8. Zhou, G.; Smid, J., Polymer 1993,34,5128
  28. 10. Chen, E. Q.; Lee, S. W.; Zhang, A.; Moon, B. S.; Mann, I.; Haeeis, F. W.; Cheng, S.Z.D.; Hsiao, B. S.; Yeh, F.; Merrewell, E., Grubb, D. T. Macromolecules 1999,32, 4784
  29. 11. Risch, B. G.; Wilkes, G. L.; Warakomski, M. Polymer 1993,34,2330
  30. 13. Dreyfuss, P.; Fetters, L. J.; Hansen, D. R., Rubber Chem. Tech. 1980,53,728
  31. 15. Marra, O. L.; Edmunds, L. O., Adhhesives Age 1971,14,15
  32. 17. 尤浚達, 生物可分解性高分子–聚乳酸之應用與發展潛力評估
  33. 19. Erwin, T. H. Vink ; Karl, R. Rabagob ; David, A. Glassnerb ; Patrick R. Gruberb Polymer Degradation and Stability 2003,80,403
  34. 20. Penju P., Yoshio I., Progress in Polymer Science 34 (2009) 605–640
  35. 21. Kobayashi J, Asahi T, Ichiki M, Oikawa A, Suzuki H, Watanabe T, et al. J Appl Phys 1995,77:2957–73.
  36. 22. Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. Polymer 2000, 41:8921–30.
  37. 23. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Polymer 2000,41:8909–19.
  38. 24. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G. , Macromolecules 1990,23:634–42.
  39. 25. AbeH, Kikkawa Y, Inoue Y, Doi Y. Biomacromolecules 2001,2:1007–14.
  40. 26. Pengju P., Bo Z., Weihua K., Tungalag D., Yoshio I., J. Appl. Polym. Sci. 2008,107, 54–62
  41. 27. Vahik K. and Darrin J. P., Macromolecules 2004, 37, 6480-6491
  42. 29. Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S. Polymer 2005,46:4917–27
  43. 32. Zhang, J.; Tashiro, K.; Domb, A. J.; Tsuji, H. Macromolecular Symposia 2006,242, 274
  44. 33. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T and Nakano M., Macromolecules 2007,40:9463–9
  45. 34. Jianming, Z.; Kohji ,T ; Hideto, T.; Abraham J. D.; Macromolecules 2008,41,1352
  46. 35. M. Itxaso Calafel , Pedro M. Remiro, M. Milagros Cortázar and M. Elena Calahorra, Colloid Polym Sci 2010,288:283–296
  47. 37. P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue, Macromolecules 2008,41, 4296-4304
  48. 38. Sanchez, S.; Ribot, F.; Lebeau, B. Journal of Material Chemistry 1999,9,35
  49. 39. Oyama, H. T.; Sprycha, R.; Xie, Y.; Partch, R. E. Matijevic, E. J. Coll. Inter. Sci., 1993, 160, 298
  50. 40. Allcock, H. R.; Lamp, F. W., Contemporary Polymer Chemistry 2nd Ed., Pretice-Hall, Inc., 1993
  51. 42. Becker, R. Ann.de. Physik 1938,32,128
  52. 43. Becker, R. ; Doring, W. Ann. de. Physik 1935,24,719
  53. 47. C. K. Sham, G. Guerra, F. E. Karasz and W. J. MacKnight, Polymer 1988,29,1016
  54. 49. T. Biela; A. Duda; K. Rode; H. Pasch, Polymer 2003,44,1851–1860
  55. 50. M. Marini, Materials Sciences and Applications 2010, 1, 36-38
  56. 52. 張漢耘,國立台灣大學碩士論文,2010
  57. 53. Burnett, B. B.; McDevit, W. F. J. Appl. Phys. 1957, 28, 1101.
  58. 56. J. Zhang, H. Sato, H. Tsuji, I. Noda and Y. Ozaki, Macromolecules 2005,38
  59. 58. T, Miyata and T. Masuko, Polym.1998,39,22,5515-5521
  60. 59. R. Liao, B. Yang, W. Yu, C. Zhou, J. Appl. Polyme. Sci..2007,104, 310–317
  61. 60. T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, N. Honma, K. Nakajima and M. Matsuda, Macromolecules 2007, 40, 9463-9469
  62. 61. Hideto T., Tatsuhiro M., Yasufumi T., and Swapan K. S., Biomacromolecules 2005, 6,244-254
  63. 62. H. D. Keith, F. J. Padden and T. P. Russell, Macromolecules 1989,22,666
  64. 63. H. Tanaka, T. Hayashi, T. Nishi, J. Appl. Phys. 1986,59,3627
  65. 65. Hideto T., Yu S., Yuzuru S., Leevameng B., Shinichi I., Polymer 2008,49,1385-1397